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Abstract 

The ability to accurately identify a vehicle’s make, model and production year from 
images can be of great value to many applications. This project explores the use of 
a deep convolutional neural network for this very task. Through training in stages, 
transfer learning and fine tuning of hyperparameters, an InceptionV3 network 
achieves Top-3 accuracy of 95.7% on a dataset with over 600 classes.  

1 Introduction 

With the increasing number of video recording devices existing in our society today, the ability to 
make sense of the recorded data has become increasingly important. One interesting aspect of this 
is to recognize the particular make, model and production year of a recorded vehicle, which can be 
of great value to fields like security, surveillance, investigative activities and even autonomous 
driving. This project explores using deep convolutional neural network to identify the make, model 
and year of a vehicle using only its picture as input. 

2 Related work 

Several groups have attempted vehicle classification with convolutional neural networks (CNN) in 
the past. For some specific task, such as automatic toll collection, projects like the one led by Y. 
Zhou, H. Nejati et al. [3] focus on classifying the type of vehicle (e.g. truck v.s. sedan) rather than 
make and model. However, the projects that do predict the make and model of a vehicle [1][2][4] 
typically omit the manufacturing year from the classification. F. Tafazzoli, H. Frigui, K. Nishiyama 
proposed a new dataset that contains the “year” information as part of the image label and 
subsequently trained a ResNet50 network that achieved Top-1 and Top-5 accuracy of 51.76% and 
92.90% [5]. This project uses the same dataset but aims at obtaining a more accurate model by 
exploring a more complex network architecture. It’s also worth mentioning that some of these 
previous projects use techniques such as YOLO [3] to more accurately outline the vehicle of interest 
from input picture prior to training the classification network. While interesting and useful for 
certain applications, this technique is not being utilized in this project as it’s deemed unnecessary 
considering the type of input samples used.  

3 Dataset 

As mentioned previously, an existing dataset, namely Vehicle Make and Model Recognition 
database (VMMRdb), published by F.Tafazzoli et al. [5] in 2017 will be used. This team cleverly 

 



collected pictures from vehicle listings on various classified websites across North America, 
resulting in 291K images spanning over 9,170 classes of vehicles. Thanks to the nature of this data 
collection mechanism, this dataset contains “real-life” images from various photographing devices, 
camera angles, lighting conditions, background environments and a range of resolutions. In this 
dataset, each unique combination of a vehicle’s make (e.g. Toyota), model (e.g. Camry) and year 
(e.g. 2007) is categorized as a class (e.g. toyota_camry_2007). Due to the nature of this approach 
to data collection, some classes have a relatively large sample size of more than 800 images while 
some less popular cars only have a handful of images. To concentrate the efforts as well as 
computing resources on obtaining a satisfying end result, this project will only use the classes for 
newer vehicles (i.e. year 2000 and later) with more than 100 images each. This trims the dataset 
down to ~118K images with 605 unique classes. Figure 1 below is the visualization of these classes 
with the size of a circle representing the relative number of samples in that class. 
 

 
Figure 1. Distribution of images per class in the dataset [5] 

 
This dataset is further divided into train/dev/test sets following an 80/10/10 split. For InceptionV3, 
the images have their resolutions normalized to (299,299,3) and 3 color channels normalized with 
division by 255 – same configurations that the default weights are trained with using ImageNet. 
The training set only has around 155 images on average per class, so data augmentation is applied. 
Further, the actual class distribution is quite imbalanced as shown in Figure 1 above, the technique 
of weighted loss is explored so that smaller classes can have relatively higher weights.   
 

4 Methods 

Various CNN architectures (VGG16, ResNet50 and InceptionV3) are evaluated on a small subset of 
the dataset and InceptionV3 is selected as the final architecture to further fine-tune using the full 
dataset. 

Figure 2. The block diagram of InceptionV3 architecture  



As shown in Figure 2 above, InceptionV3 model consists of many sub-blocks and each block 
contains multiple filters of different kernel sizes running in parallel. Comparing to manually pre-
define filter, this design brings extra flexibility as the network automatically tunes to the best 
performing filters for a given layer through the training process [6]. Furthermore, InceptionV3 is 
over 300 layers deep and has over 24 million trainable parameters, enabling the detection of very 
complicated features.  

The model is initialized with pre-trained weights using ImageNet with all convolutional layers frozen 
and only the fully connected (FC) layers being trainable. The idea is that the technique of transfer 
learning could potentially benefit this project, which fundamentally is also an image classification 
problem.  

5 Experiments/Results/Discussion 

5.1 Training Strategy 

As mentioned previously, the model is initialized with pre-trained weights (using ImageNet) to take 
advantage of transfer learning. Initial training has all the convolutional layers frozen, but it yields 
unsatisfactory dev accuracy. Next, under the assumption that the low-level features of VMMRdb 
images are similar to those of ImageNet’s and their weights can be “transferred”, final 
convolutional layers targeting high level feature detection are unfrozen. This results in slight 
performance improvement but with much more to be desired. Similarly, initial convolutional layers 
are then configured as trainable instead of the final layers, which doesn’t yield dramatic changes 
either. At this point, it’s realized that not only does the vehicle classification task require rather 
unique low-level feature detection, the entire InceptionV3 network should be unlocked for training. 
This is necessary even though the 24 million trainable parameters mean that the training time per 
epoch will increase multiple folds.  

5.2 Hyperparameter Tuning 

In order to speed up the process of hyperparameter tuning, a subset of the full dataset is selected, 
specifically 40 (out of the 605) classes with the most images. An initial search of various parameters 
is then carried out and the top 3 sets with the highest dev accuracies are listed in Table 1 below.   

Set # Epoch Optimizer Learning Rate Momentum Batch Size LR Decay 

1 30 SGD 2.00E-04 0.8 32 0 
2 30 SGD 1.00E-04 0.8 32 0 
3 30 SGD 1.00E-04 0.8 32 1e-2/epochs 

Table 1. Top 3 hyperparameter sets from the initial search 

A discrete desktop class NVIDIA Titan V board with GV100 GPU and 12GB of memory is used for 
training. With all layers trainable, it supports a maximum batch size of 32, which happens to be the 
best performing among the tested batch size values. Adam, SGD and RMSProp optimizers are 
tested and SGD has the best results. Since all 3 hyperparameter sets have similar accuracies, plots 
of their accuracies as well as losses during the 30 epochs of training are compared and set #3 shows 
the most potential for significant improvement over longer period of training, it is therefore 
selected as the candidate for further tuning. First, longer duration of training is carried out to 
establish baseline model/weights to be used for training with the full dataset later. Figure 3 below 
shows the accuracy and loss plots during 200 epochs (~9 hours) of training with the “top 40” 
dataset using hyperparameter set #3. 



Figure 3. Plots of accuracy and loss of hyperparameter set #3 over 200 epochs of training 

I now have a good baseline model and weights, which fit the “top 40” dataset well, to be tested on 
the full dataset. Considering the full dataset has 605 classes and 6x more images, the current model 
performs poorly, as expected. Therefore, another round of hyperparameter tuning ensues. Using 
30 epochs of training internals, it appears the main issue now is the variance gap between training 
and dev accuracies, and changes in current hyperparameters don’t necessarily reflect as 
improvements in the results – regularization is then experimented with. Eventually, L2 
regularization as well as a dropout unit in the FC layers leads to the best results, as shown in Table 
2 below.     

Epoch Optimizer Learning Rate Momentum L2  Batch Size LR Decay Dropout 

30 SGD 1.00E-04 0.8 0.005 32 1e-2/epochs 0.5 
 

Table 2. Finalized hyperparameters (with regularization terms) 

Once the hyperparameters are settled, longer training sessions are carried out. After ~300 epochs 
and over 60 hours of training, the network saturates at 44.7% Top-1 accuracy and 95.7% Top-3 
accuracy.    

5.3 Error Analysis 

Even though the obtained Top-3 accuracy is much better than the results achieved by F. Tafazzoli 
et al. [5], error analysis is still needed to better understand the errors in the predictions and 
potentially improve the model. As a first step, activations of various convolutional layers are 
visualized to examine what features the network is looking for. Figure 4 below contains the outputs 
of the first conv2d layer’s 32 filters, using a mis-predicted image as input.         

Figure 4. An example input image and its activations from the first conv2d layer 

It appears that the filters are somewhat detecting the right features. We can observe that the 
outline of the truck is highlighted correctly and certain features such as the rims and taillights are 



also very prominent. Activations from subsequent layers are also examined but as the layer gets 
deeper, the visualizations are more convoluted and make less sense visually. As there’s no obvious 
issues observed in the filter outputs, it’s decided to look at the incorrectly predicted images more 
closely next.  

By plotting the confusion matrix of selected classes, it’s soon noticed that many wrong predictions 
are correct for the make and model portion but slightly off in the year number. To quantitively 
understand the percentage of wrong year predictions, the list of 11622 total predictions are then 
processed to have the year number removed and compared to the true label again. Surprisingly 
this leads to a mere 562 incorrect predictions. In other words, among the 11622 images, 44.7% 
have their make/model/year predicted correctly, 50.5% have only make/model (but not year) 
predicted correctly and only 4.8% have their make/model mistaken. Common sense suggests that 
vehicles of same make and model but from different production year tend to have very similar 
exterior features and would be difficult to extinguish even for a human expert. Manual inspection 
through this category of images seems to confirm this theory in many instances. Same treatment 
of visual inspection is applied to some random samples from the 4.8% error category as well, it 
appears, not so surprisingly, that many of the original and predicted vehicles have striking 
similarities. Figure 5 below shows some examples of this case.  

Figure 5. Examples of similar-looking labeled and predicted vehicles  

Even though some of these vehicles are difficult to distinguish even for a human expert (e.g. first 
set of pictures depicting the minivans in Figure 5 above), others are technically possible for a deep 
CNN to identify. Features like the brand logo or even the model’s name (e.g. texts “325i” and “330i” 
printed on the BMW’s in above Figure) are present in some input images but are clearly ignored by 
the InceptionV3 network. To capture these fine features, perhaps a standalone network using YOLO 
algorithm can be deployed first to localize these features and classify them before sending the 
image through the InceptionV3 network.  

6 Conclusion/Future Work 

For the chosen dataset with 117.6K images of 605 unique vehicle classes, after tuning weights from 
all parameters, InceptionV3 network with hyperparameters described in Table 2 is able to achieve 
Top-1 accuracy of 44.7%, Top-3 accuracy of 95.7% for make/model/year prediction, and Top-1 
accuracy of 95.2% for make/model only prediction. For future improvement, an even bigger and 
more complex network can be explored to solve the problems of missing features such as logos 
and texts. Furthermore, the Top-1 dev accuracy plateaus during training while training accuracy 
keeps increasing, indicating a variance problem. The original authors of the VMMRdb dataset 
focused on Craigslist and Amazon postings but didn’t collect anything from the vast network of 
dealerships’ websites across the country. If a crawler script can be written to (somehow) utilize this 
data source, this jump in the amount of input data could potentially improve the performance of 
my model even more. 



7 Contributions 

I, Sean Li, am the sole person to have worked on this project. All references have been included in 
the References section, with open source code credited accordingly in my project code submission. 

8 Code Submission 

https://github.com/seannlii/deepcar 
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