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Abstract

Our project aims to consider the issue of crime risk prediction and how neural
networks can be utilized to provide additional resources to support crime preven-
tion strategies. Using VGG-16 architectures trained on street view and satellite
images and San Francisco crime data, we attempted to predict relative crime risk
at locations in San Francisco. Our report builds off previous work by Najjar et.
al and others by exploring the additional use of street imagery, adjustments in
image-based parameters, the use of a multi-input model, and more. We fail to
achieve successful performance, but we developed insights with regards to the task
at hand.

https://github.com/jonah-wu/cs230-geospatial-crime

1 Introduction

In many urban areas, police departments, needing to provide effective coverage to their citizens, find
difficulties in determining which areas require the most attention from its resources and personnel.
In certain cities, such as San Francisco and Chicago, the intersection between years of detailed,
publicly-available crime data sets and the need for additional insights to support a limited police
task force creates an opportunity for deep learning and data analytics in a field now known as
predictive policing. This field has shown promise: in Richmond, the police department’s use of
data analytics allowed them to see a 47 % decrease in shootings when first implemented on New
Year’s Eve 2003 [11]. However, significant concerns have been raised regarding the fairness of these
algorithms, particularly when used to characterize which areas are safe and due to their being built
on data representing historical discriminatory policing [12][13]. In recent years, researchers have
been exploring the use of geospatial data; given the nearly universal extent of geospatial data and its
easy accessibility, we see its largest implementation potential in areas that are less data-rich and that
therefore cannot take advantage of traditional data analytics on compiled data. Another motivation
for exploring satellite imagery is to find different tools to support police departments that has the
potential to decrease unwanted biases which have plagued predictive policing strategies [12][13].
Our team explored different implementations of a VGG-16 model basing our approach off of Najjar,
et. al. For this project, we utilized different variations of a VGG-16 architecture to train a network to
perform crime risk prediction.
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2 Related work

Previous studies in both crime prediction and poverty mapping have provided insights on the potential
of Convolutional Networks on spatial data in international scenarios. Najjar et. al utilized CNN
transfer learning on satellite imagery using ImageNet and Place205 weights, implementing predictions
based on cumulative crime counts to bin geographic areas into "low, neutral, and high" categories of
safety. After 60,000 training iterations on a 95%/5% split, they were able to achieve an accuracy of
63.8% to 79.5% [12]. Jean, et. al, in a paper on poverty mapping in data-poor regions, was able to
similarly use ImageNet weights and successfully utilized Google Static Maps API to scrape granular
satellite data for their project; similar to Najjar, et. al, they used clustering to work around potential
noisiness in the data [7].

Additional work in this field conducted by Lin, et. al; emphasized the potential of feature construction
as well as the need for larger data sets to stop "information overlap” [9]. Chandrasekar, et. al, unlike
Najjar et. al, in their crime prediction of hotspots on crime categorized crimes according to types,
instead of pure crime counts, to help get a more granular view that categorization merely according
to crime counts would not provide [1]. The success of these projects inspired our team’s trust in the
applicability of Google API-based satellite and street image data.

3 Dataset and Features

Our data input was based on publicly available crime data provided by the local government of San
Francisco on DataSF. The first model utilized a dataset approximately 160,000 crimes recorded since
2018. The data set for the second and third models provided in each log the coordinates, type of
crime, and for crimes reported on the SFPD Crime Incident Reporting System between 2003 and the
present-day. That data set contains approximately 330,000 crimes, which includes crimes recorded
from 2016 onwards, two times the data in the first model. The dataset contains crime type and
coordinate address of the crime among other fields [14].

As mentioned above, the images for the model were taken from Google APIs. Images were pulled
based on the intersections; intersection coordinates that do not match the particular coordinates for a
Google street view image are discarded, but this was not a significant amount. Our model was able to

Figure 1: Sample street view (top) and satellite images (bottom)
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utilize all 330,000 crime data points by using the following function to find the closest intersection,
which we believed was a good approximate:

min(|L0ngitUdeintersection - Longitudecrime| + |LatitUdeintersection - LatitUdecrimeD

While this method of data collection was slightly inaccurate, when looking at the specific coordinates
of sample data whose closest representative seemed to be significantly off, our method picked out the
closest intersection.

4 Challenges

The main challenges for our models were related to data collection and quality of the images used.
The lack of good quality images, bad clustering, and lack of data plagued our project. When
conducting a qualitative analysis of the images obtained from the Google street view API, it was
observed that the images were not consistent, coming from different angles and locations relative to



the surrounding built environment. In addition, it is suspected that the disproportionate stretching
of image components contributed to excessive variability. For example, a significant number, of the
images included pictures of the road pavement, which we inferred would not be predictive of crime.
Utilizing a view with a wider angle for street view images did not show significant improvements.

Moreover, our clustering methods changed significantly over the course of the project. The initial idea
to cluster based on crime count, particularly when the range of crime counts per category was equal,
failed because the dataset is highly skewed towards lower crimes with only some neighbourhoods
having high crime rates. As a result, our team suspected over-fitting and utilized log transforms and
oversampling methods as corrective measures, though this may have decreased the model’s accuracy.
In addition, while there was a sufficient amount of recorded crimes, limitations of intersections to
approximately 9,000 meant that there might not have been enough images, particularly given the
relatively complex recognition task given to the algorithm, compounded with the above-mentioned
lack of image quality.

5 Methods

This project’s baseline model is a VGG-16 CNN based on transfer learning from a ImageNet (VGG
16) model. Our team decided to use this model particularly because, with multiple possible parameters
that can be analyzed, a robust image-processing machine learning model was required. The loss
function used was the Sparse Categorical Cross Entropy loss in Keras. This loss function is defined
as the sum of the logarithmic differentials, which deducts from categorizations more than linearly
based on distance from real categorization. The loss function, mathematically, is expressed as follows

[51[6]:

n
LossFunction = — Z to,c * l0g(po,c)
i=1

Our baseline strategy in this report was to split, similar to the strategy pursued by Lin et. al, areas
in San Francisco into grids [9]. From this and the datasets mentioned in the sections above, the
following dictionaries were made: 1. Geoindex-to-Crimes: Each of the grid areas were given i.d.s,
or an index, as keys and the cumulative number of crimes committed in the area as its value. This
dictionary was created by running through the SF crime database and counting the number of crimes
per given intersection and accumulating the crimes from all the intersections for the given grid area.
2. Latitude-Longitude-to-Geoindex: This is a dictionary with each latitude and longitude coordinates
acting as a key and its grid region ID as the value.

Instead of making a latitude-longitude-to-crime dictionary directly, these two dictionaries were used
to implement binning on the different grid regions using K-means. K was equal to three representing
’Low’, "Medium’, and 'High’ classes. We had decided on three classes by testing the distortion
measure on the data we fed KMeans with. Our first model utilized percentiles but this distributed the
regions into a significantly uneven distribution between the classes. This crime count data was paired
with another data structure for Google satellite images and Google street view images. As mentioned,
this was scraped from the Google Places API. Data augmentation was implemented on this data set:
our team trained on two different zooms of satellite data as well as street view based on the model.
These images were categorized into the three above-mentioned K-means divisions.

The first model was a standard VGG-16 model with an altered final layer. This model only utilized
Google street view data. The final layer used to get the output is a softmax prediction layer. We
believed that using ImageNet weights would enable effective transfer learning. Labels for each of the
images were generated based on the corresponding lat long’s relative crime count percentile. Bottom
40th percentile was placed in the ’low’ class. 40th to 70th percentile was placed in the *'medium’
class. Above 70th percentile was placed into the “high’ class.

The second model implementation was tested on both satellite and street view images. Moreover,
this model used k-means clustering for labelling the images rather than percentiles. Moreover, larger
regions (e.g. the grids) were used, and we oversampled from medium and high crime regions. The
model also used logits instead of softmax activation for numerical stability, addition of multiple
fully-connected layers with RELU activation, and experimented with different optimizers including
SGD with momentum.



Figure 2: Generation of larger gridded regions to bin data/images for 2nd and 3rd model

In the third model we used both satellite and street view images in a multi-input architecture built
via Keras functional API. Instead of combining the images into one VGG-16 model, Pairs of images
were fed through parallel VGG-16 models, the satellite image through one model, and street view
through the other. The outputs of each were adjusted such that the two model’s output (512 units) was
concatenated and combined into a 1028-unit fully connected layer. Three dense fully-connected layers
(512-unit, 256-unit, and 128-unit) were used afterwards before utilizing a 3-unit prediction layer. We
experimented with dropout layers in an attempt to improve over-fitting to particular mini-batches,
which was a concern from the initial model.

Figure 3: Model architecture as seen below but with VGG-16 network parameters taking in street
view and satellite images.

6 Experiments/Results/Discussion

For our project, hyper-parameters were mostly empirically tested and verified. Given the size of
the available image data (limited by intersections), we wanted to make the most use of the data for
training so 90% of the data was allocated to the training set, and 10% to the validation set. The
learning rate used for gradient descent, the convolutional filter size (3x3), the size of the max pool
(2x2), and the stride (Max pool: 2, convolution: 1) were based on standard VGG-16 implementations.
The dropout used in the dual-input model was 0.3 for all the dense layers. To optimize the learning
rate, our team decided to adjust mini-batch size as well as implement Adam Optimization. For the
first model, a mini-batch size of 256 images was used. For the second and third models, a smaller
mini-batch size of 128 was utilized due to the increased number of weights to train.

Other algorithms/deviations for the model that were attempted were as follows:

1. Initially, the algorithm was based off of individual intersections, in San Francisco; however, due
to signs of data-over-fitting, including a consistently high loss function in spite of higher accuracy
values, we decided to attempt to improve performance by combining the intersections into larger
areas. Model 2 and Model 3.

2. The inclusion of two different zoom levels for satellite imagery was chosen based on what the
team members thought included sufficient objects to analyze. Model 2.

The results for the models were not as successful as hoped for. The first model had an accuracy of
approximately 40% with a loss function that had a high variance and that did not decrease significantly.



This was a sign of high bias in the street view model. The second model was an attempt to fix this
and resulted in only a slightly higher accuracy at 50%, when used only on satellite imagery. The
loss function for this model followed the same pattern of variance similar to the figure below, such
that the methods adopted to improve learning were not successful. The last model using the dual
input VGG-16 architecture also unfortunately did not result in significant advances, with comparable
performance to the second model. Because of the relatively insignificant influence that the model

Figure 4: Sample accuracy training through 100 epochs for 1st VGG-16 model. 2nd and 3rd model
variance was comparable
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changes had on model performance, we believe that getting more and better quality images, would
have been the most helpful in decreasing bias due to the relatively complicated image processing
we were expecting the algorithm to do. This is particularly true with street image data because of
the large number of visual components that could be analyzed to predict crime, which our team
inferred to be more nuanced than previous work on satellite images. In addition, unlike satellite
data, these street images are not consistent, often containing distorted objects as well as being in
different angles. Therefore, more data was required than our team expected and collected. In terms
of image recognition, the accuracy of the model suggests that the VGG-16, as referenced in the
above-mentioned sources, is a relatively successful transfer learning scheme. In addition, the lower
influence of the region optimization, parallel models etc. does not necessarily mean that, with more
data, these implementations would have no effect. Rather, collecting more and higher quality data in
addition to these changes would be a good place to get to in continuation with the progress made in
our research.

7 Conclusion/Future Work

While this project did show the potential of applying Convolutional Neural Network algorithms
towards crime prediction, building off the work of Najjar et. al [12], the results were not successful.
Implementation of k-means clustering rather than crime percentiles, larger regional grids, seemed to
help. Moreover, at first glance, satellite imagery seemed to be superior to street view imagery for
our task. However, these efforts did not significantly decrease the bias of the model, though they did
show potential. To build on this work, we would collect significantly more image data to increase the
number of intersection pictures processed through the model. It would also be interesting to see the
performance on the model when broken down by other characteristics in addition to total crime count
including crime type, time of day, season etc. We would also like to build a model which additionally
considers features of neighbouring regions, as done by Duan, et al [3].

8 Contributions

Jonah Wu developed the data pipeline between the SF crime data and the images. He implemented
the first VGG-16 model, the second VGG-16 model by integrating all the improvements, as well as
the multi-input street and satellite imagery model. He did the hyper parameters testing and tested
changes to the model architectures. He made the poster and video presentation.

Johannes Hui scraped the Google APIs for the satellite and street images. He developed the idea of
using K-means and implemented the algorithm on our data. He assisted with testing hyperparameters.

Ricky Toh Wen Xian helped look up and analyze possible VGG-16 implementations and created a
data structure to expand the number of crime counts extracted. Ricky also wrote this final report, and
the milestone report. All three team members contributed to the initial literature review done for this
project.
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*Note that these are only references from which code inspiration was taken from explicitly. Docu-
mentation is not recorded below. The libraries that were used include scikit-learn, Keras, pandas,
numpy, pickle, and more.
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