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Abstract

In genomics, local ancestry inference (LAI) is used to estimate the ancestral
composition of a genomic sequence at high resolution. Here, we describe an
approach to LAI which leverages deep learning techniques developed for image
segmentation. We consider two formulations of the ancestry inference problem —
namely, local and global inference — and benchmark our algorithms using real
and simulated genotype data from the 1000 Genomes Project.

1 Introduction

Local ancestry inference (LAI), also known as ancestry deconvolution, is used to estimate the ancestral
composition of genomic sequences at the resolution of individual base pairs. As human genetic
studies have grown in size and scope to accommodate increasingly diverse samples, LAI has emerged
as a critical step for analyses ranging from genome-wide association studies to the inference of human
population history.
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Figure 1: Pictoral representation of ancestry deconvolution. The left chromosome pair shows the
ground truth ancestry of each genetic segment. The right chromosome pair represents hypothetical
inferred ancestries of each genetic segment.

The input for LAI is a human genome sequence, and the output is a masked annotation of each
position of the sequence which indicates its population of origin (e.g. African, European). At various
stages of this project, we also consider the “global ancestry” problem, which has the same input as
LAI (i.e. a genome) but only seeks to label the population of origin for the entire sample. The key
difference here is the admixture assumption: in the case of global ancestry, individuals are assumed
to belong to one population, whereas LAI explicitly considers admixed individuals whose ancestry
comprises multiple populations. This results in a significant dimensionality difference for these two
models: global ancestry is a single-class output, but LAI is a mask of size p (genome length).
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In general, analyses of genomic data are subject to the classic p > n problem, as the human genome
is 3 billion base pairs in length. However, not all genomic loci vary in humans, with ~ 99% of
sequence shared between individuals. Variants near one another on chromosomes can also be highly
correlated, sometimes in population-dependent ways. In the case of LAI, the modeling task is further
complicated by variation which is ubiquitous in humans but does not encode information useful to
infer ancestry (i.e. the junk feature problem).

2 Related work

Prior work on ancestry inference has relied heavily on Hidden Markov Models (HMMs), though
these models have evolved in complexity as genotyping technologies have matured. The earliest tool
for global ancestry, STRUCTURE [1], used a model-comparison approach to assess the likelihoods
of samples originating from the one or several populations based on a set of unlinked genotypes; a
similar Bayesian method was also considered [2].
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This tool was later extended to account for correlation across genetic variants by adding a “linkage’
model [3], which allowed for local ancestry estimation. Other similar HMM-based models were
also developed, with specific considerations for trans-ethnic mapping of disease genes [4]], variable
admixture times [3]], varied geographic population distributions [[6], or which permit the use of
fine-scale reference panels of genetic variation [7]], or allow much faster computation (ADMIXTURE)
[8]]. These approaches to the LAI problem have been extensively reviewed [9].

The current gold standard tool for LAI in research settings, RFMix [10], uses independently trained
random forest models to predict ancestry within genomic windows of size ~ 400kb (400,000 base
pairs). For computational tractability, these random forests estimate parameters of a conditional
random field model of ancestry within each window, rather than predicting ancestry directly.

3 Dataset and Features

In this work we make use of a reference dataset of genetic variation called the 1000 Genomes Project
(1KG) [[L1]. This dataset contains the whole-genome sequences of n = 2, 504 individuals in 29
distinct world population groups (e.g. “Northern Europeans in Utah”, or “Mende in Sierra Leone”).
For our analysis, we have an effective n = 5, 008 phased haploytpes in 1KG, as every individual has
two copies of each chromosome.

As genomic data are very wide (p = 81,271, 745 over the entire 1KG cohort), we work with two
subsets of the human genome to speed up computation. The first is a subset of p; = 57, 876 variants
on chromosome 1 which are present on the genotyping array used in a large population cohort study in
the UK [12]]. Microarrays are an affordable genotyping technology which assay ~1 million genomic
variants; they are commonly used in large-scale genetic studies and by direct-to-consumer genetic
testing companies [13]] [[14]. The second subset is the entirety of chromosome 21, which contains
p2 = 1,105, 538 genetic variants. Results in this document are from the first subset only.

We also collected augmented data resulting from simulating admixture between individuals. Each
simulated genome is an approximation to that of an individual with diverse ancestral background (e.g.
father from Europe, mother from Africa). These genomes are created by one of two approaches: (1)
naively stitching together genotypes of non-admixed individuals, with the number of stitch points
sampled as a Poisson variable with rate proportional to the number of generations of mixing [[15]];
or (2) with the msprime [16] software, which simulates genotypes from genealogical trees sampled
according to a coalescent model due to Hudson [17].

4 Methods

4.1 Predicting global continental ancestry with a small FCNN

To ensure that our subsamples of genomic sequence contain sufficient information to predict ancestry,
we first implemented a small neural network consisting of three fully-connected layers. Our “small-
net” took as input a contiguous block of 500 genomic variants. The alleles of each variant (e.g. A vs.
T) were one-hot encoded, and passed to a fully connected layer of 500 nodes (followed by ReLU



activation); a second fully connected layer of 30 nodes (ReLU activation); and a final, fully connected
output layer of five nodes (softmax activation).

Our small net has five output nodes since there are five continental ancestry groups in our data: AFR
(Africa), AMR (Americas), EAS (East Asia), EUR (Europe), and SAS (South Asia). This network
was trained on a random subsample of 4,000 haplotypes with categorical cross-entropy loss, and
evaluated on the remaining 1,008 in a train-test holdout design. Code and results for this model are in
modell.ipynb, which is implemented primarily in tensorflow [18], with some tools for model
assessment borrowed from scikit-learn [19].

4.2 Global ancestry prediction with a CNN

We have also implemented a convolutional neural network (CNN) for global ancestry prediction in
Keras [20]. This network consists of two convolutional layers, followed by a fully-connected layer,
then an output layer to predict either continental (5 labels) or population-level (26 labels) ancestry.

In light of the large window size used by RFMix, we chose an initial filter size of 512 with a (very
large) stride of 256. Given the relative sparsity of genetic variation, we found 64 filters to be a
sufficient cover of the likely landscape of variation in a window of this size. Likewise, for the
second convolutional layer we chose 32 filters of size 64 with a stride of 4, to account for possible
longer-range correlation across the chromosome. As is standard in CNNs for imaging-type tasks, we
follow the convolutional layer with a fully-connected layer prior to the output layer. Given the size of
the input from the convolutional layers, we decided to have 64 nodes in this layer.

Through ad-hoc experimentation we found that global ancestry prediction is quite robust to these
parameter choices, including removal of the fully-connected layer prior to output. This is not too
surprising since genetic variants differ in frequency across populations to the point where simple
linear models, such as those in early models of global ancestry [1] [3]], can perform quite well.

4.3 Generalized loss functions for Global ancestry prediction

We also experimented with creating a loss function that penalizes misclassifications based on the
extent to which the prediction and the ground truth are related. For example, predicting that a sample
from Finland is from China would be more wrong than predicting that it is from somewhere else
in Europe. We therefore implemented a customized loss function that penalized misclassifications
proportionally to the great-circle distance between the ground truth label and the prediction.

To obtain a second measure of the extent to populations in our dataset are related, we used the total
genetic variance contained in each population relative to the total genetic variance between any two
given populations, denoted Fis7, as computed by the 1000 Genomes Project Consortium [21]]. We
concluded that F's7 may serve as a good proxy for the genetic relatedness of any two populations in
our dataset. Consequently, we implemented a second model that penalized misclassifications using
the Figr score (see CNN_Global. ipynb).

We further experimented with formulating global ancestry as regression, using the geographic
coordinates of origin for each of the 1KG populations. For this task, we treat latitude and longitude
as separate output parameters in the interval [0, 1] and then scale the resulting output to [—7/2, /2]
for latitude and [—m, 7] for longitude. Since the distance between two coordinates on the Earth is an
arc on a great circle, we use the Haversine distance as our loss function for a single sample:
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where y = (¢, 8); are the latitude/longitude for sample 7. The architecture of the CNN otherwise
remained the same as above (see CNN_Global_Haversine_v2.ipynb).

4.4 Local ancestry inference with a U-Net

To generalize our approach to the LAI task, we re-implemented a publically available U-Net ar-
chitecture (https://github.com/zhixuhao/unet), which has been shown to perform well at


https://github.com/zhixuhao/unet

segmentation tasks [22]]. This model consists of five “downward” convolutional layers with max-
pooling, and five “upward” convolutional layers with up-sampling and feed-forward links from earlier
layers in the U-shape. We naively kept the hyperparameters as-is in the public implementation (up to
changes necessary to accommodate a one-dimensional input), and refer the interested reader to the
GitHub and reference linked above for more information on this architecture (see CNN_LAI. ipynb).

S Experiments/Results/Discussion

5.1 Toy example: Predicting continental ancestry from a window of genomic sequence

We first decided to check whether our subsampled data contained sufficient information to predict
ancestry. To accomplish this, we built a global ancestry model using a small window consisting
of the first 500 variants on chromosome 1, which roughly corresponds to the window size used by
RFMix at the density of our subsample (~1 variant per 1.2kb). We trained a fully connected neural
network (FCNN; see Methods) on a random subsample of 4,000 haplotypes from 1KG and tested on
the remaining 1,008. As this is a proof of concept experiment, we decided against using an additional
holdout validation set. We found that the FCNN was able to interpolate the training set within a few
dozen epochs (99.75% training accuracy), and that its predictions generalized reasonably well to
the test set (82.7% accuracy). This suggested that genomic windows of approximately 500 variants
contain sufficient information to predict the local ancestry of individuals across an entire chromosome,
at or near this resolution.

5.2 A next step: Predicting global ancestry with an entire chromosome

Given the success of our small FCNN at predicting global ancestry in a small window, we decided to
use a convolutional neural network (CNN) architecture for the global/local ancestry problem. We use
the same evaluation framework for this model as for the FCNN, training on a random sample of 4000
1KG haplotypes and testing on the remainder. In the case where we predict continental ancestry, the
CNN is also able to rapidly interpolate the training set and achieve excellent performance on the test
haplotypes (~98.5% classification accuracy), with most errors due to mislabeling American samples
(AMR) as African (AFR) or European (EUR), or vice versa.

In the case where we predict population of origin (26 output classes rather than 5), we see significantly
reduced test set accuracy (~60%). However, misclassifications rarely occur outside continental
ancestry blocks (see figure 3), with many errors owing to non-identifiability of nearby populations
(e.g. Yoruba [YRI] and Esan [ESN], both from Nigeria).
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Figure 2: Confusion matrices for population-level classification task with categorical cross-entropy
loss (Left), inverse distance weighted loss (Center), and distance loss (Right). Populations are grouped
by continent, and separated by red bars.

To try to improve the performance of our model, we implemented a custom loss function that penalizes
misclassifications based on the distance between the prediction and the ground truth (measured either
by distance or genetic relatedness; see Methods). When we used the great-circle distance as a proxy
for the genetic relatedness, our model’s accuracy decreased. However when we used the relative



genetic variation between any two populations (Fs7), our global ancestry predictions improved
slightly (from about 61% to about 62%).

We implemented one model in which misclassifications of closely related populations are highly
penalized (i.e. by inverse distance), and another in which misclassifications of closely related
population are penalized less (i.e. proportional to distance. Interestingly, accuracy only increased
for the first model. As expected, our model that penalized misclassifications of closely related
populations more was slightly better at distinguishing between closely related populations (Figure 2).

5.3 Generalizations: Coordinate loss and a U-Net for LAI

Given the geographic diversity of the 1KG populations and the relative similarity of neighboring
populations, we decided to consider ancestry prediction as a regression problem by having the model
output the latitude and longitude coordinates of each sample. Unfortunately, we found that Haversine
loss performs worse compared to mean squared error over the coordinates (data in Jupyter notebook).
However, we are able to predict ancestries quite well overall (Figure 3); though there are noticeable
differences in training and test set performance, this is likely an accurate reflection of reality as some
populations (e.g. Europeans in North America — teal in Figure 3) should be predicted as the midpoint
of their geographic source and ancestral geography. Viewed through this interpretation, the apparent
poor performance of our model on the test set actually reflects the geographic migratory history of
each of these populations (e.g. European migration and African slave trade to the Americas).

Coordinate predictions on train set
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Figure 3: Coordinate predictions for genetic samples using the Haversine loss model.

To extend our CNN architecture to the local ancestry task, we also implemented a U-Net [22], which
performs well for image segmentation tasks. Since LAl is essentially a 1D segmentation problem, we
hoped this model would perform well here; however, we found that this model failed to learn, and
instead converged on predicting one ancestry at all sites (data in Jupyter notebook).

6 Conclusion/Future Work

Here, we present an application of deep learning genetic ancestry inference. Our CNN model
discriminates global ancestry at regional resolution from the equivalent of one chromosone of array
genotyped genetic data. When formulated as coordinate regression, our model remains predictive and
and recapitulates the migratory history of admixed populations in the Americas.

However, significant work remains to translate these successes into a viable model for LAI. Future
directions for U-Net development include (1) hyperparameter tuning to avoid local minima; (2) using
a wider set of data (e.g. all chromosome 1) to model genetic data at finer resolution; (3) further data
augmentation to reduce overfitting. We suspect that our findings will be of interest to the population
genetics community, and we will pursue further development of our model.



7 Contributions
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performed testing of all models, and co-wrote the manuscript. J.S. and M.A. would like to acknowl-
edge Alexander Ioannidis (ioannidis@stanford.edu) and Daniel Mas Montserrat for assistance
with the data collection and ideation for this project.
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8 Appendix

Population Code Color in fig 3

Sri Lankan Tamil in the UK STU

Tascani in [taly T5I

Punjabi in Lahore, Pakistan AL
lpanese in Tokyo, Japan FT

Chinese Dai in Xishuangbanna, China DX
Utah residents (CEPH) with Northern and Western European ancestry CEU
Han Chinese in Beijing, China HH
‘Gujarati Indians in Houston, TX GIH
African Ancestry in Southwest US AEW
Gambian in Weastern Division, The Gambia - Mandinka [ ]
Lubya in Webuye, Kenya LWE

Iberian populations in Spain ES
Colombian in Medellin, Colombia LM
Finnish in Finland FN

Puerto Rican in Puerto Rico FUR

Mende in Sierra Leone MaL

Bengali in Bangladesh BEB

Esan in Migeria ESN

Mexican Ancestry in Los Angeles, California MxL
Kinh in Ho Chi Minh City, Vietnam KHW
African Caribbean in Barbados ACE
Peruvian in Lima, Peru FEL

Han Chinese South CHS

Yoruba in lbadan, Nigeria TRl

Indian Telugu in the UK mJ

British in England and Scotland GBR

Figure 4: For brevity, we refer to the 1000 Genomes populations by their canonical three letter codes
in the main text of this paper — we here include their full names and countries of origin as reference.
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