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Abstract

With a road traffic death rate of 27.8 per 100,000 inhabitants
in 2016, Kenya has nearly twice as much road fatalities as the
world average. Hence, understanding the factors determining
road danger is key and we are the first ones to attempt at achiev-
ing this goal by constructing a deep learning model entirely
based on videos of several road segments from Nairobi. The
best-performing model is a pre-trained Res-Net3D with shorter
video clips which results in a test set accuracy of 50%. Com-
paring the results with the rest of the proposed models, we are
able to infer that road danger is not only a function of quality
of the road, but also of the density of road and pedestrian ac-
tivity within a given timeframe. While similar models for video
classification of daily activities reach an accuracy of 70%, we
believe that given the increased complexity of our classification
task (road danger), we fare rather well as a first pass. Click here
to access the GitHub repo of this project.

1. Motivation and Related Work

Providing traffic safety and lowering the rate of road
accidents in Nairobi, Kenya is a major concern.
With a road traffic death rate of 27.8 per 100,000 in-
habitants in 2016, Kenya has nearly twice as much
road fatalities as the world average (WHO, ongo-
ing). Collaborating with the World Bank, we are
the first ones to construct a deep learning model
entirely based on videos of several road segments
from Nairobi. The model allows us to analyze dif-
ferent road conditions and predict danger level of
roads.There have been previous studies which used

deep learning to evaluate the risk of traffic accidents
such as Hébert, Antoine, et al. (2019), Chen et al.
(2016) and Yuan et al. (2018). These studies have
mainly focused on training models based on fea-
tures such as weather, human mobility, road con-
ditions and satellite images. However, we aim to
develop models which process raw video data cap-
turing traffic patterns in order to classify road dan-
ger level. Karpathy et. al. (2014) write the sem-
inal paper on video classification using 3D CNN-
based models. Later papers such as Abu-el-Haija
et. al. (2016) and Diba et. al. (2017) come up with
deeper and more advanced architectures and incor-
porate transfer learning in order to improve perfor-
mance. The current state of the art model is given
by Carreira & Zisserman (2017) who reach 80.9% ac-
curacy on HMDB-51 dataset and 98.0 % on UCF-
101 dataset. Most of the papers use daily activity
datasets, which is arguably a much easier classifi-
cation task that the road danger evaluation that we
aim to conduct.

2. Data

The data we obtained from the World Bank consists
of the following datasets:

* A geojson file containing 912 unique entries,
each entry corresponding to a 100-meter long
road segment.

* A geojson file with 1428 crash hotspots linked
to the number of annual crashes between
2012-2018 along with the number of fatalities
occurring at each hotspot.

* A folder with 852 videos of length varying be-
tween 2 and 8 minutes, all videos taken in
the morning and capturing traffic and pedes-
trian activity on different road segments (the
videos do not capture crashes, but rather road
conditions that are typical of that particular
location and time of day).

Our first task consisted in finding the number of
crashes associated to each road segment. We
achieve this by matching road segments to crash

IThe three team members have contributed equally to the development of this project.
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hotspots using geographical coordinates in the fol-
lowing way. We calculate the distance between each
road segment and hotspot and match segment i to
hotspot j as long as the distance between i and
j is less than 130mE] As a result, it happens that
some road segments could be matched to multi-
ple hotspots: 2 roads have no match, 288 roads
have a unique match, 424 roads have two matches,
165 roads have three matches, 21 roads have four
matches, 11 roads have five matches and 1 road has
six matches.

Figure 1: SEGMENT (BLUE) MATCHED WITH 1
HOTSPOT (RED)

d

Figure 2: SEGMENT (BLUE) MATCHED WITH 4
HOTSPOTS (RED)

For road segments matched to multiple hotspots,
the final number of crashes associated to a road
was calculated as the average of the number of
crashes occurring in all hotspots matched to that
road where each matched hotspot is weighed by the
inverse of its distance from the road (i.e., hotspots
closer to a road get a larger weight) E] We finally note
that only fewer than 200 out of the 1428 hotspots
were used as matches for the roads. We notice,
in fact, that those hotspots report more crashes
than the average number of crashes across the 1428
hotspots, which means that our task should be in-
terpreted as analyzing road danger intensity in lo-
cations that are relatively more dangerous at the
outset. This observation is in line with the World
Bank’s strategy to take videos of the most dangerous
hotspots.

Next, we create labels for those roads in terms of
danger, which we assume to be an increasing func-
tion of the number of crashesf_r] In theory, it is is
possible to use the number of crashes directly as
our output variable and perform a regression task.
However, the crash data is very likely to be subject to
measurement error, which would make predictions
noisy had we decided to go ahead with a continuous
label. Therefore, we were more confident adopting
an ordinal categorical approach in which we clas-
sify the roads into 4 categories using a k-means al-
gorithm. The number of clusters has been chosen
by playing around such that we try to keep k rela-
tively small, but at the same time capture a decent
level of danger heterogeneity. We get the following
distribution of road danger:

Table 1: Distribution of Road Danger

Mean # of Crashes Percentile of the
Danger level || # of Roads | within a Category | Corresponding Mean
1 344 6.40 18 %
2 367 14.94 59 %
3 130 26.30 86 %
4 71 44.27 96 %

3. Training and Validation Datasets

Our videos are processed as follows. First, we crop
all videos to a sub-clip of a pre-determined length
(see below for details), starting from a random point
in time. Table 1 shows that we suffer from class
imbalance which could negatively affect our train-
ing. We deal with this issue using two distinct
approaches. The first approach consists in going
ahead with the class imbalance issue and report-
ing a variety of evaluation metrics rather than just
aggregate accuracy which we know can be mislead-
ing in this context. The second approach consists
in directly dealing with class imbalance by includ-
ing more observations for categories 3 and 4. In
particular, rather than just sampling copies of those
videos, we instead decide to crop videos for cate-
gories 1 and 2 and keep longer videos for categories

2This was the rule that the World Bank recommended since the geometry of each hotspot was constructed based on reporting
approximate car accident locations which could have occurred in a larger radius.

3We consider only the sum of crashes between 2015 and 2018 since records have not been consistent in earlier years.

“We initially considered the severity of accidents as well; however, when normalizing by number of crashes, the severity in dif-
ferent hotspots was similar, so we disregard that feature. As a robustness check, we performed a second classification where we did
include severity, but this did not change the label classification substantially.
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3 and 4. In particular, we set the length to 30 sec-
onds for categories 1 and 2, 75 seconds for category
3 and 150 seconds for category 4. Notice that cate-
gories 3 and 4 are respectively 2.5 times and 5 times
longer than category 1 and 2 videos, which corrects
for the fact that the number of roads in category 3
and 4 is respectively 2.5 and 5 times lower than the
number of roads in categories 1 and 2. As is stan-
dard in the literature of video classification, we then
cut each cropped video into a number of shorter
video clips and use those as our final inputs to the
algorithm. Notice that with the same video clip
length across categories, the number of video clips
across categories becomes comparable (since cate-
gory 3 and 4 videos are longer) and hence we obtain
a balanced training set even though the number of
actual full-length videos is still imbalanced, but this
does no longer affect training itself. For the first
approach that does not deal with class imbalance
directly, we crop all videos to a length of 150 sec-
onds, which we further cut into video clips of same
length for each category. Clearly, this will keep the
class imbalance in terms of number of video clips
per category and hence our training set remains im-
balanced.

For both approaches, we divide our video clip data
set into train, validation and test using a propor-
tion of 80:10:10. We resize video frames to 112 pix-
els height x 112 pixels width, and we normalized
the pixels to floating point values between 0 and 1,
using calculated mean and standard deviation over
the training samples. Hence, each video clip has a
shape of (C, T, H, W) = (3,15,112,112).

4. Method

Following a Caviar-like approach, we choose to
train 3 main types of deep neural networks:

¢ A ConvNet-3D which we train from scratch.
This model has two 3D convolution layers
(Convl: 32 filters 5 x 5 x 5, Conv2: 64 filters
3 x 3 x 3) each followed by a 3D BatchNorm,

ReLU and Dropout (p = 0.2) layer. The convo-
lution block is followed by a 3D MaxPool (2 x
2 x 2) and two fully connected (FC1: 256, FC2:
128) + ReLU layers, and a 4-class Softmax. We
use Cross-Entropy loss function to train this
model optimized using Adam Optimizer.

» A pre-trained 18-layer ResNet-3D (Tran et al.
(2017)) to which we add two hidden fully
connected (FC1l: 256, FC2: 128) + RelLU +
Dropout (p=0.2) layers, and a 4-class Soft-
max. The ResNet-3D 18 model is pre-trained
on Kinetics-400 dataset. During training, we
freeze the weights of the ResNet 18 block, and
train the two additional fully connected lay-
ers. We use Cross-Entropy loss function to
train this model optimized using Adam Opti-
mizer as well.

* A ConvNet-2D model based on ResNet-18
where we just sample random single frames
from each video-clip. Again, we have two fully
connected (FC1: 256, FC2: 128) + ReLU +
Dropout (p = 0.2) layers, and a 4-class Soft-
max added to the pre-trained model and we
train these layers only, keeping the ResNet
weights fixed. The same Cross-Entropy loss
function optimized using Adam Optimizer is
used for training.

Given time and financial constraints, we decided to
tune hyperparameters that were common (mostly)
to the three models. Thus, our main tuning param-
eter becomes the length of the video clips. We fix
the number of frames per video clip to 15 and we set
frames per second to either 1 or 10, which results in
15 and 1.5 seconds video-clips respectivelyE] A sec-
ondary tuning parameter is epoch length. The best
epoch length for the pre-trained ResNet-3D models
was 6 (validation accuracy started decreasing after
the 6th epoch), while we did not observe substan-
tial improvement after the 9th epoch for the rest of
the model such that we trained those for 10 epochs.
We set the learning rate to 0.0001, and the batch size
to 40 for 1FPS clips and to 200 for 10FPS clips.

SFor the Conv-2D model, since we are just sampling single frames, we know that this does not affect the length of video clip,
hence the two models are essentially the same. Rather the difference between the two models is that we will be sampling more
frames overall for the 10FPS models. Indeed, our results show that there are basically no differences in performance between the

ConvNet-2D 1FPS and 10FPS, which confirms our prior.



STANFORD UNIVERSITY

WINTER 2020

The results with the imbalanced data set are sum-
marized in the tables below where, in addition to
aggregate accuracy, we also report category-specific
accuracy to check whether the model performs well
also in the classes that are scarcer{’

Table 2: Accuracy Results (in %): Training Set

Training Accuracy
Model 1 2 3 4 All
Conv3D, 1FPS 72.54 | 68.18 0 0 57.26
Conv3D, 10FPS | 89.21 | 90.91 | 36.66 | 14.28 | 78.63
ResNet3D, 1FPS 100 | 2.27 0 0 44.44
ResNet3D, 10FPS || 90.19 | 88.63 | 60 7.14 | 80.76
Conv2D, 1FPS 89.21 | 11.36 0 0 43.16
Conv2D, 10FPS | 98.03 | 4.54 0 0 44.44

Table 3: Accuracy Results (in %): Validation Set

Validation Accuracy
Model 1 2 3 4| Al
Conv3D, 1FPS 20 100 0 0 | 53.84
Conv3D, 10FPS 64.70 | 60.60 0 0] 4941
ResNet3D, 1FPS 100 0 0 0 | 38.46
ResNet3D, 10FPS | 55.88 | 51.51 | 18.18 | 0 | 44.70
Conv2D, 1FPS 100 | 16.66 0 0 | 46.15
Conv2D, 10FPS 100 | 15.15 0 0 | 45.88

Analyzing the results, we see that ConvNet-3D,
10FPS and ResNet-3D, 10FPS have the lowest bias
(lowest training set error in terms of aggregate ac-
curacy) whereas ConvNet-3D, 10FPS has the high-
est aggregate accuracy on the validation set (low-
est variance). However, looking more carefully at
category-specific accuracies, ResNet-3D, 10FPS is
actually the only model that is able to correctly clas-
sify a positive fraction of category 3 videos despite
the fact that it does not perform best in terms of ag-
gregate accuracy. To obtain additional evidence, we
compare the true distribution of labels to the pre-
dicted distribution of labels on the validation set for
each of the 6 models.

Table 4: Category Distribution (Validation Set):
True vs Predicted

Category Distribution
Model 1 2 3 4

True Distribution || 38.46 | 46.15 | 7.69 | 7.69
Conv3D, 1FPS 7.69 | 92.31 0 0

Conv3D, 10FPS 4941 | 48.23 | 1.17
ResNet3D, 1FPS 100 0 0

ResNet3D, 10FPS | 47.05 | 47.05 | 5.88
Conv2D, 1FPS 88.46 | 11.53 0
Conv2D, 10FPS 89.41 | 10.58 0

oS O O O O

We observe that the predicted distributionsﬂ given
by ResNet-3D, 10FPS and ConvNet-3D, 10FPS are
closest to the true distributions with ResNet3D,
10FPS being somewhat closer. In conjunction with
the aggregate accuracy and class-specific accuracy
results, it seems that ResNet-3D, 10FPS is the best
model among the six with our first approach. The
other models are incapable of recognizing cate-
gories 3 and 4 at all, which while certainly related
to the class imbalance issue, do not dispute the fact
that ResNet-3D, 10FPS performs best as it can rec-
ognize those higher categories despite the class im-
balance.

Additional inspection of the results shows that the
temporal dimension of the video does matter: the
ConvNet-3D and ResNet-3D models do perform
better overall compared to the ConvNet-2D model.
This suggests that road danger is not just given
by background characteristics of the video that are
fixed (e.g., road and pavement quality, presence
of zebra crossings an lights, etc..), but also de-
pend on features that change over time (e.g., cir-
culating traffic and flow of pedestrians). Further-
more, the 10FPS videos, which are the shorter video

6Accuracy can be calculated using two approaches. The first one averages predicted probabilities across video clips within a video
and sets the predicted label to the category that has the highest average predicted probability across the four categories. The second
approach predicts labels per video clip and sums predicted labels across video clips within a video. The final predicted video label is
set as the one that has the highest number of video clips with that label (similar to majority voting). Since the average approach and
majority approach coincide in more than 90% of the cases, we present results with the average approach to avoid 50-50 problem

which occurs sometimes with the majority approach.

"One may notice that the true distribution of labels within our dataset does not perfectly coincide with the true distribution from
Table 1. This is because Table 1 uses all road segments present in the geospatial file while for training, we only use the road segments
for which we have videos. It is reassuring however that the distribution based on the available videos is similar to the distribution

based on the full set of roads.



STANFORD UNIVERSITY

WINTER 2020

clips, give better performance. Notice that this re-
sult was not clear ex-ante and that is another rea-
son why we chose clip length as our main tun-
ing parameter. Longer videos could have higher
accuracy as they could contain more and better
connected information about road activity while
shorter videos might contain more disconnected
information which might reduce performance. In-
deed, we observe the opposite in our results which
we interpret as the additional information con-
tained in the longer video possibly being “lost on
the way”, i.e., this information getting averaged out
across the network layers which mechanically re-
duces its richness. On the other hand, while more
disconnected information comes from the shorter
clips, less averaging out is occurring throughout the
network such that more of the video clip informa-
tion (albeit of lower content and noisier) is main-
tained.

Unfortunately due to time and financial con-
straints, we were unable to run our second ap-
proach which deals with class imbalance directly
with all six models. Instead, we run the second ap-
proach only with the best model from the first ap-
proach, the ResNet-3D, 10FPS. The results are sum-
marized below:

Table 5: Second Approach Accuracy Results (in %)

Accuracy
Set 1 2 3 4 All
Training 64.22 | 48.38 | 66.27 | 82.22 | 59.41
Validation + Test || 52.94 | 48.48 | 36.36 | 28.57 | 47.05

Table 6: Label Distribution (Validation Set): True vs
Predicted

Category Distribution
Model 1 2 3 4
True Distribution 40 38.82 | 12.94 | 8.23
Second Approach Predicted Distribution || 27.05 | 36.47 | 20 | 16.47

Notice that we combine validation and test sets
since we are training a single model hence we
can evaluate the performance directly on all non-
training sets. Notice that thanks to solving the class
imbalance issues, the model is much better at rec-
ognizing category 3 and category 4 roads. Aggre-
gate accuracy on the validation is now higher for
this model compared to the first case and comes

mainly from improving class-specific accuracy for
categories 3 and 4. We observe, however, that bias
is also higher. The model is worse at predicting cat-
egories 1 and 2 labels on the training set. To put
everything in perspective, however, state-of-the-art
video classification algorithms that we clearly could
not have implemented due to time and financial
constraints reach an accuracy of 80%-98% depend-
ing on dataset used. Simpler video classification
models reach an accuracy of around 70%. However,
note that these are videos classifying different activ-
ities (e.g., eating, swimming, dancing, etc.) rather
than road danger, which is a very different and ar-
guably more complex activity. Indeed, we tried to
ask World Bank traffic specialists to classify a sub-
set of videos manually in order to get an estimate
of human error for this task, but unfortunately we
were not able to get this estimate in time. Looking at
previous papers that do road danger classification
based on satellite images, those reach a top accu-
racy of about 73%, but have much larger datasets.
Hence, overall our 50% accuracy on the validation
set looks like an encouraging starting point given all
constraints we were facing.

5. Conclusion and Future Work

We recognize that our work so far does not give any
unambiguous answer on which model works best in
the context of road danger classification. However,
we believe that we can form reasonable priors on
what kind of models might improve performance:

* Deep 3D pre-trained models in which some of
the earlier 3D layers are re-trained as well to
account for the novelty of classification task.

 For longer video-clips, possibly come up with
a structure that reduces the loss of informa-
tion due to averaging and pooling across the
network before reaching the fully connected
layers.

» Explore the ordinality of our classes. Dur-
ing training a true label belonging to category
1 should have higher mass of assigned pre-
dicted probability to categories 1 and 2 rather
than 3 and 4 since 3 and 4 are increasingly
more dangerous than 2.



STANFORD UNIVERSITY

WINTER 2020

6. References
World Health Organization:

apps.who.int/gho/data/node.main.A997

Video Classification Blog Post:

https://blog.coast.ai/five-video-classification-

methods-implemented-in-keras-and-tensorflow

99cad29cc0b5

Abu-El-Haija S, Kothari N, Lee J, Nat-
sev B Toderici G, Varadarajan B, Vijaya-
narasimhan S. "Youtube-8m: A large-
scale video classification benchmark." arXiv
preprint arXiv:1609.08675. 2016.

Carreira, Joao, and Andrew Zisserman. "Quo
vadis, action recognition? a new model and
the kinetics dataset." proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. 2017.

Chen, Quanjun, et al. "Learning deep rep-
resentation from big and heterogeneous data
for traffic accident inference." Thirtieth AAAI
Conference on Artificial Intelligence. 2016.

Diba A, Fayyaz M, Sharma V, Karami AH,
Arzani MM, Yousefzadeh R, Van Gool L.
"Temporal 3d convnets: New architecture
and transfer learning for video classification."
arXiv preprint arXiv:1711.08200. 2017.

Hébert, Antoine, et al. "High-Resolution
Road Vehicle Collision Prediction for the City
of Montreal." arXiv preprint arXiv:1905.08770
(2019).

Karpathy A, Toderici G, Shetty S, Leung T,
Sukthankar R, Fei-Fei L. "Large-scale video

classification with convolutional neural net-
works." InProceedings of the IEEE conference
on Computer Vision and Pattern Recognition.
2014. pp. 1725-1732.

Lin, Lei, Qian Wang, and Adel W. Sadek.
"A novel variable selection method based
on frequent pattern tree for real-time traf-
fic accident risk prediction." Transportation
Research Part C: Emerging Technologies 55
(2015): 444-459.

Najjar, Alameen, Shun’ichi Kaneko, and
Yoshikazu Miyanaga. "Combining satellite
imagery and open data to map road safety."
Thirty-First AAAI Conference on Artificial In-
telligence. 2017.

Theofilatos, Athanasios. "Incorporating real-
time traffic and weather data to explore road
accident likelihood and severity in urban ar-
terials." Journal of safety research 61 (2017):
9-21.

Tran, Du, et al. "A closer look at spatiotempo-
ral convolutions for action recognition." Pro-
ceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 2018.

Yuan, Zhuoning, Xun Zhou, and Tianbao
Yang. "Hetero-convlstm: A deep learning ap-
proach to traffic accident prediction on het-
erogeneous spatio-temporal data." Proceed-
ings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data
Mining. 2018.

PyTorch Libraries.



