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Abstract. This work addresses a deepfake video and audio recognition task using a variety of Deep 

Learning techniques. In this study we investigated several architectures featuring CNNs, LSTMs, Xception 

networks and compared their performance. 

1. INTRODUCTION  
Deepfake techniques, which present realistic AI-generated videos of people doing and saying fictional things, 

have the potential to have a significant impact on how people determine the legitimacy of information presented 

online. In this project we are focusing on using machine learning techniques to detect deepfakes using data 

provided by Kaggle as a part of a challenge [1]. 

2. RELATED WORK 
Deepfakes recognition is a relatively new topic and there are still no robust solutions that allow to identify either 

audio or video fakes with enough confidence. Still there are some works that were done in this field that we 

referred to. The idea of using a CNN+LSTM architecture was borrowed from [2]. We also referred [3], [4] to 

build Xception+SPP/DSP+FWA architecture that turned out to be the most promising one. 

3. DATASET AND FEATURES 
We used datasets provided on Kaggle [1]. There are 4 groups of datasets available: 

• Training set: The complete dataset, containing labels for the target. There are 470 Gb of archived videos 

in it. There are 119,146 training videos in total, out of which 99,992 are fake and 19,154 are real.  

• Sample sets: There is a small dataset of 400 labeled videos directly available from any notebook within 

the challenge, we used it for testing purposes. Also there is a set of 400 unlabeled videos that are used to create an 

output submission table. 

• Public test set: This dataset is completely withheld and is what Kaggle’s platform computes the public 

leaderboard against. When notebook is committed, the code is re-run in the background against this dataset. 

 All videos are of the same length, resolution and frame rate, what makes them convenient to use. 

4. METHODS 
As all the current neural network architectures may only work with image data and not videos, first we chose the 

number of frames to extract from each video. We ended up extracting 40 frames per video as it seemed not to 

deteriorate networks training process and at the same time was not too time consuming to extract them. We also 

tested different face extracting libraries and chose MTCNN from facenet-pytorch as the one featuring the best 

accuracy/time consumption ratio. We chose 244x244 as the exctracted face images resolution. Eventually we used 

only extracted faces/stacks of them for training and prediction, as it is the area of interest for our task.  

 In our experiments we used the following deep architectures: 

• ResNet-50 is a 50-layer deep convolutional neural network that is trained on more than a million images 

from the ImageNet repository. Each layer follows the general pattern of convolutional layers, batch normalization 

and down sampling with slight variations and the output layer is a fully connected layer for the weight and the 
bias, which we have replaced with the updated dimensions. 

• VGG16 is another traditional deep architecture based on 16 convolutional layers pretrained on ImageNet 

• CNN+LSTM was build based on the code from a GitHub repository [3]. It consisted of several blocks of 

layers, each in its turn consisted of two convolutional layers followed by batch norm and dropout layers with max 

pooling at the end. The network head included an LSTM and a FC layer followed by another batch norm. Each 

layer preceding an LSTM was time distributed, meaning that it was applied to every time step in an input 
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example. Input to the network was 4-dimensional, with the 4th dimension corresponding to time. The shape of an 

input was (40, 244, 244, 3) 

• Xception (or extreme inception) architecture implementation is based on the original paper [4]. It includes 

36 convolutional layers that are structured into 14 modules all of which have linear residual connections around 

them, except for the first and last modules. The idea is based on depthwise separable convolutions usage. First, to 

each of the input channels 3x3 convolution is applied, extracting spatial information from each channel 

independently. Then, 1x1 convolution is applied to gain information from a cross-channel dimension [4]. Input 

again consisted of 40 frames per video, but it was3 dimensional with all the frames stacked on top of each other, 

forming an array of the shape (244, 244, 120) 

• Another form of input data was used for Xception, which was to use single frames from the videos instead 

of stacking the frames together. We extract 5 equally spaced frames from videos that are labeled REAL and we 

apply facial warping artifacts (FWA) as explained in [5] for negative data generation. To summarize, given an 

image of a face, the FWA captures the face features 

using dlib CNN face detector then it blurs the 

captured face feature and affine warps it back to the 

original face image. This procedure emulates deep-

fake faces and it is much simpler to generate 

compared to using autoencoders. Also as described in 

[5], training the NN on FWA generated images 

improved the performance of detecting deepfakes. 

The figure on the right roughly shows the FWA 

negative data generation procedure. We processed 

5286 real faces and generated 5186 fake faces using 

FWA and we used these data for training Xception.  

• Note that for both stacked and single frame Xception models, we are only training on videos that have 

only a single face. This is because we realized that if a video contains more than one face, and if one person has a 

fake face and the other person is real, the entire video will be labeled fake, but we will be feeding in both the real 

and fake faces into the neural network and this may cause confusions during the training phase.  

5. EXPERIMENTS AND RESULTS 
We started with several simple models to use them for benchmarking.  

First, Logistic Regression and SVM (with linear kernel) were implemented. Unlike later models that used 

MTCNN, OpenCV was used to detect faces from the extracted frames. The full train set was split into train and 

validation set with stratification to maintain an equal proportion of fake and real labels. Grid search was used to 

tune the hyperparameters of Logistic Regression, and the experiment was conducted with 255 epochs and a 

learning rate of 0.001 using binary cross-entropy evaluation metric. Logistic Regression yielded a train accuracy 

of 83.25% and a validation accuracy of 83.33%. SVM did worse than Logistic Regression, ending up with a 67% 

validation accuracy. We use flattened images for training and we likely lose information in the pixels from 

flattening.  

 

Next, we tried a ResNet-50 architecture with a binary cross-entropy loss as the evaluation metric. Ideally, we 

wanted to run multiple experiment by freezing various different layers and comparing the result, but given the 

time and computational constraints, transfer learning approach was implemented in two scenarios: (1) freeze all 

layers prior to layer 3.0 and (2) freeze all layers prior to layer 4.0. In addition, we set the learning rate to 0.01 with 

zero weight decay and set the number of epochs to 10. 

We also performed finetuning of VGG16 alongside ResNet-50. In this experiment we tried to change the number 

of hidden units from 1024 to 4096 in the first fully connected layer and change the number of trainable layers 

from 0 to 4 as well. The results obtained with different parameters look similar and the batch accuracy and loss 

graphs are shown in the reference section for finetuning with 1024 hidden units in the first fully connected layer 

and all the original layers of VGG16 frozen. In case of finetuning with VGG16, the training accuracy level 

reaches 0.8 in the beginning of the training and remains flat. Loss seems to behave similarly – decreases in the 

beginning of the training and then fluctuates. 

We trained a simple CNN from scratch to see how it compares to VGG16. We tried two architectures shown in 

Figure 1, where every blue rectangle corresponds to a convolutional layer and every green one to a max pooling 

layer. Every convolutional layer is followed by a batch norm layer and a dropout layer with the dropout rate of 

0.3. At the end of both networks there are two fully connected layers with 120 and 84 hidden units. The first 
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architecture performed better, and its batch accuracy and loss throughout 7 epochs of training are shown on the 

Diagram provided in section 8 of the references below. Again, after the 1st epoch the network seems to make no 

progress, and its training accuracy reaches a plateau at around 0.8. 

 
Figure 1. CNNs architectures. Parameters of convolutional layers are shown in the following format: 8@5x5 

notation means we have 8 filters of size 5x5. 

 
Figure 2. . History of CNN 1 batch accuracy and loss 

 
In the Figure 2 the trining process of a CNN 1 is shown. Validation accuracy reached 75%. Next experiment 

involved training CNN+LSTM architecture to try to leverage temporal nature of data. In the process of tuning 

hyperparameters we activated and deactivated convolutional blocks described in the section 4. We also changed 

filter sizes in convolutional layers, number of nodes in the FC layer and dropout keep probabilities. The 

architecture that was chosen is shown on the  
 

 

Figure 3. Each convolutional layer is followed by batch norm and dropout layers, all the layers before LSTM are 

time distributed. 

 

 

 

Figure 3. CNN+LSTM architecture. The same notation 

is used: before @ is the number of filters, after – the 

filter size / number of hidden units 

 

 

 
 

On figure 4 below, training progress is shown. Again, training accuracy reaches plateau at around 0.87, what is 

better, than for CNN architectures described above, but the algorithm still cannot reach a satisfactory accuracy 

value. It may be related to the sequential nature of LSTM – it is good at recognizing sequences (i.e. classifying 
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different activities in videos), but any actions in our training examples are completely unrelated to their labels. 

Videos can be real or fakes regardless of whether actors move their heads, turn, walk or remain motionless. 

Validation accuracy reached 85% at the end of training.  

 

 

 

 

 
Figure 4. History of 

CNN+LSTM batch 

accuracy and loss 

 

 

 

 

 

 
Our final experiment involved using an Xception architecture. We reproduced the architecture from the original 

paper [4] in such a way we can tune the hyperparameters and played a bit with the architecture itself. The 

Xception we implemented is much deeper 

(with skip connections) than the proposed 

architecture in figure 5 and it has been 

optimized for better training. We have 

implemented the Xception such that we can 

configure hyperparameters like the number of 

residual blocks, the filter size, the number of 

filters being used, the stride etc. There are 

many hyperparameters and these can be 

inspected from the github code. Instead of 

regular Xception, temporal Xception might 

also be a good option, but we believe using 

stacked faces would help capture temporal 

correlations in the video even with regular 

Xception.  

 

Figure 5. Xception architecture. 

When tuning hyperparameters for 

Xception with stacked data, we 

changed numbers of convolutional 

filters in each of the block except 

exit flow, number of blocks, 

learning rate, optimizer, added 

fully connected layers, added and 

removed MaxPooling layers, 

removed BatchNorm layers, 

introduced dropout layers with 

different keep probs, added l2 

regularization, changed activation functions in fully connected layers. Eventually we managed to fit the training 

set perfectly, but the maximum validation accuracy achieved was around 80%.  

 
When training the Xception for single face data with FWA negative data generation, we carried out 5 

experiments, each time training roughly 2000 samples on 1000 epochs using GPU using Paperspace (training the 

entire data set of 10472 images created an OOM error).  For each experiment, after the 1000th epoch the training 
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and validation losses were close to zero (for the 5th experiment, the training loss was at 4.07e-05 and validation 

loss was at 7.47e-05 after 1000 epochs) and training and validation accuracy was 100%. This clearly shows that 

Xception is very good at differentiating real faces and FWA generated faces. However, FWA generated data may 

not be enough for covering all the different types of deepfake on the Kaggle dataset, so we may have to augment 

the real+FWA face data with more examples of fake from the Kaggle public data set.  

6. NEXT STEPS AND THE BIG PICTURE 
So far we have only submitted a pretrained Xception and a Resnet-50 ensemble on Kaggle, which resulted in a 

loss of 0.44 on the Kaggle test data. Our aim is to also test our Xception models on the Kaggle test data and see 

how it performs. These are the steps we will take:   

1. For the stacked data we currently have 6000 train data. We can process more data for training. Also, as 

mentioned in section 4 methods, the Xception is trained on only videos with single faces, however when 

testing we would also have to test for videos with more than one face. In this case we would have to 

create multiple stacks with the same face and in order to do this we need to develop some face tracking 

mechanism to ensure that each stack contains the face of the same person. A few methods we thought of 

was to discern the peoples’ faces using the distance of the detected face from the leftmost border of the 

frame, or by calculating the difference between the detected position of the face of the current frame and 

the position of the face in the previous frame.  

2. For Xception with single frame we know that it does well on discerning FWA generated faces and real 

faces. However, before making the submission to Kaggle we would have to augment the data set by also 

containing more fake faces from the actual Kaggle train set, because the fake faces we have for the single 

frame model are the ones generated from real faces only. Also, FWA can be improved as currently it 

affine warps back the rectangular region of the face as shown in the figure in page 2, but it can be 

implemented to more closely warp around the face by computing the convex hull around the facial 

landmarks -  shown in more detail here: https://github.com/iljimae0418/CS230-

deepfake/blob/master/FWA/advanced%20fwa.png. We can also implement face alignment on some faces 

that appear heavily skewed.  

3. We can implement a higher assessing net (HAN). Typically we would get predictions from different 

models and average their results, but instead of this why not create a neural network that can selectively 

decide which model to trust on more given the input data? Then we have HAN which is a network that 

takes the input video itself as well as the predictions from the models as the input and the output node of 

HAN would give an actual probability of the video being fake. We can use multiple Xception (both 

stacked and single frame model) with different hyperparameters as well as the pretrained 

Xception+Resnet-50 ensemble that we used to submit to Kaggle, as well as the CNN+LSTM model.  

4. Some Kaggle training videos have audio deepfakes as well. In the metadata file for the training video, if 

the video is labeled FAKE, then its original video name is also listed next to it. However if this column is 

blank it means that there is audio modification. We can convert deepfake audio detection into an image 

classification problem: first extract the spectrogram of the audios and because the spectrograms of 

deepfake and real audios are different, we can pass these images into a CNN for classification. We can 

create an ensemble with our deepfake face and audio classifier. More analysis can be found here: 
https://github.com/iljimae0418/CS230-deepfake/blob/master/Audio%20Analysis.docx 

5. At the moment, for both the stacked faces and the 

single face data, we are using an image size of 

244x244. However, we can prepare our test data set 

such that we have variable image size for input e.g. 

some images may be of dimension 244x244, some 

images may be of dimension 300x300 and some may 

be of dimension 600x600. This can be done by using 

spatial pyramid pooling (SPP) [6]. SPP can be 

implemented right before the fully connected layer 

and it applies multiple levels of pooling to create 

multiple 1-dimensional vectors which are then 

concatenated before being fed into the fully connected layer. This way any image sizes can be inputted 

and it does not cause problems of losing information by cropping or resizing images to a fixed dimension.  

https://github.com/iljimae0418/CS230-deepfake/blob/master/FWA/advanced%20fwa.png
https://github.com/iljimae0418/CS230-deepfake/blob/master/FWA/advanced%20fwa.png
https://github.com/iljimae0418/CS230-deepfake/blob/master/Audio%20Analysis.docx
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