
Application of Deep Convolutional networks applied to Portfolio Optimization.
Author: Roy Justus (roy@justushome.net)

Introduction:

In this paper, I demonstrate the use Deep Convolutional models to learn complex hidden features in a market,
across equities with the ultimate objective of producing optimal portfolio allocations among multiple equities in
order to inform trading strategies.

The underlying hypothesis behind this approach is:

Where correlations exist between prices of equities, the mechanisms of actions of some subset of these
correlations are likely to take effect with some delay allowing some equities to serve as weak leading indicators of
the behavior of others.

Prior work:
The applications of a reliable predictive and prescriptive models of stock prices and portfolios promise direct
financial benefits and thus have been widely studied. While it can be assumed that the majority of the serious
effort applied to this field is behind closed doors of institutional investors there is some published work that should
be noted where Deep Learning architectures such as MLPs, CNN and LSTM models have been applied to the
problem of predicting the future price of an equity at some point in the future.

K. Khare, O. Darekar, P. Gupta and V. Z. Attar provide a conceptual overview of how MLP, LSTM architectures
could be applied and conducted their own research which concluded that an MLP architecture outperforms an
LSTM based model for short term price prediction. Documented efforts to apply CNN models include the 2019
work on the Thai stock exchange by L. Sayavong, Z. Wu and S. Chalita. Their approach included application of
one or two convolution + pooling layers and predicted output price.

Several common themes are seen in the literature is the use of absolute price as the prediction target and RMSE
as the evaluation criteria. Also noteworthy is that each of these papers have been applied primarily to non-US
stock markets using daily market data and look at one to 10 stocks independently, that is to say that the prediction
of stock X’s price is based only on data from stock X (daily open, close, high low and volume “bars” are the typical
data sets.)

This project expands on the prior work through the incorporation of three novel components in the analysis:

1. I will attempt to factor in features of 346 stocks over sliding 60-minute windows using a novel architecture of 2D
convolutional layers.

2. I will attempt to optimize a portfolio of multiple stocks simultaneously as a multi-task learning problem.
3. Finally, for purpose of evaluation I will use the ability to generate returns in excess of a balanced portfolio of the

applicable equites as the evaluation metric rather than RMSE of price prediction.

Limitation of Scope:
This project has not taken on the very significant considerations of trading costs, market impact or ability to
purchase shares at a quoted close price and leaves these tasks to future work, likely though construction of a
Reinforcement Learning agent.

Selection of target equities:
The equities analyzed in this project were selected from among S&P 400 mid-cap stocks with a history going back
to at least 2015. Mid-cap stocks are somewhat less actively traded, and I suspected that greater informational
latency might exist in those markets due to less focused scrutiny from institutional investors.

Dataset and Features

Data Preparation:
I have requested and been granted access to Polygon.io datasets which
provide equity, forex and other data streams both historically and in real
time for minute by minute resolution. The retrieved data is for 346 stocks
selected from US mid-cap stocks with a public trading history going back
to at least 2015 and in the raw form consisted of standard Open, Close,
High, Low, Volume for each minute period for each stock. (With gaps if a
stock was not traded in that minute which have been filled by setting
volume to 0 and filling forward the previous close for other values).

Features:
From this dataset I extracted 8 simple features (show in the table on the
right) which were calculated as my model inputs. Given time constraints,
tuning the feature inputs was not a significant focus and greater
improvements are expected from greater refinement.

Standardization:
In X and in numerous blog articles online Y where the prediction
target is the next equity price in absolute terms the input features
are scaled to a range between 0-1 using a min-max scaler. Given
that I had selected a set of near stationary features for my inputs I
opted for a standard scaler instead (mean=0, variance=1) with
each input feature scaled independently.

Input Data structure:
It’s important to note that my input data eventually takes the shape
of (m, t, e, f) where the variables are respectively samples,
timesteps, equities and features. This can be thought of as a 60 by
346 image with 8 channels. This intuition is important and I’ve
plotted an image to the right using a subset of features to give you
a sense of what it might look like over one trading day.

Methodology:
While the ultimate objective is to recommend an optimal portfolio allocation policy, this project separated the
objective into two stages. The first phase was intended to confirm that the model architecture had a feature
extractor capable able to make meaningful sense of the raw input data and then in the second stage the objective
function was modified to directly optimize profitability of the portfolio based on input data.

The two problems shared a substantial portion of the network architecture with only a few layers at the output side
being changed to allow for the appropriate output format. (section C in the Model Architecture Summary on the
following page)

Section A is a convolutional network which performs two stages of feature extraction. In the first stage (3, 1) and
(2, 1) convolutions 1are used with average pooling to analyses the features of each equity independently,
summarizing to more abstract features based on increases and decreases in the various feature channels. Then in
the second stage of convolutions a (2, 346) convolution scans the entire market one timestep at a time with 256
filters intended to map interdependencies between the high-level features of multiple equities. This can be thought
of as first looking for structure in the X axis of my 2d visualization and then followed by scanning for noteworthy
interrelations in those structures over the entire Y axis.

1 The unusual choice of such small filters is inspired by the work of J. Eapen, D. Bein and A. Verma who
combined 1D convolutions with LTSTM models to produce promising results.

Table of Features

Name Time
Period

Absolute Change 1 minute
Percent Change 1 minute
Relative Rolling Mean
(10)

10 minutes

Relative Rolling Mean
(60)

60 minutes

Relative Rolling Low
(10)

10 minutes

Relative Rolling High
(10)

10 minutes

 2D visualization of Input Data

R: Percent Change
G: Relative Rolling Mean
B: Range

Time in minutes

E
q
u
it
y

(o
n
e

p
er

 l
in

e)

Minutes

Section B is a simple sequence of Dense layers whose exact parameters
are determined in my hyperparameter search.

Section C is the output mapping layers, in the Prediction problem this
consists of small dense layers for each equity while in the Allocation
problem this consists of dense layers terminating in a SoftMax to provide a
vector of fractional portfolio allocations summing to 1.

Hyper Parameters
For each of my experiments I have constructed a hyperparameter
specification config file which allowed me to quickly vary the following
quantities (and some others that I ultimately found it not advantageous to
tune)

My search methodology initially was to hand select likely combinations
based on intuition, quickly this became time consuming so I set up an
asynchronous hypothesis generation and testing pipeline by deploying my
learning model to parallel cloud instances in AWS and feeding in a central
config file queue for worker nodes to test. This allowed me to scale up to 6
GPU instances to simultaneously test hyperparameters.

Encoder layers – A full specification of Encoder Layers for Module B. This
consisted of 4-8 Dense layers with 150-2250 units in each. Here I sampled
uniformly in 150 unit increments throughout the range.

Dropout Regularization – Most dense layers in the model have dropout applied. For practical reasons only a
single dropout value was used throughout and this was sampled uniformly from between 0-0.5. with 50%
probability no dropout is applied.

L2 Weight Decay Regularization – Most layers in the model have an L2 regularization penalty applied. Only a
single value was used throughout. A value between 0-1 was sampled and raised to the power of eight, resulting in
a trend towards smaller values with a very few larger exceptions.

Other Parameters

Parameters which were originally varied but were not tuned in the final hyperparameter search include
convolutional filters, Learning Rate and Optimizer (ADAM with default parameters was finally used), Loss function
(for the Regression problem), numerical precision, batch size, and number of stocks to predict for. (The latter three
ended up being bounded primarily by available GPU memory.)

Discussion of Experiments and Results

I’ve evaluated two objectives; one is a regression objective to predict the absolute change in value of the equity
and the other is to distribute funds in a portfolio:

Regression Results
In the first phase I aimed to find a mechanism to extract useful features and generate an encoding of the market
that could be relied on to predict price movement. While working on the regression problem I explored multiple loss
functions including both standard and non-standard options. Mean squared error was ultimately selected.

Analysis of the data showed three important insights:

1. Stocks would often go a whole month without a single buying signal being detected. In fact in January and
September 2018 not a single signal was detected in the entire month.

2. The resulting predictions were also not easy to translate to a recommendation on trading strategy and left
unanswered questions on how to allocate a fixed sum of money and which of several stocks has the best
probability of profit.

Model Architecture Summary

Overall, I found that I was able to make slightly useful predictions about a small number of samples and I achieved
validation accuracy of 52.4% on average (over 12,950 predictions in 2018 (validation). Note that predictions
approximately equal to 0 are considered no signal and thus not counted.

January 2018 (FULT), No useful predictions

 April 2018 (FULT), 52 of 82 predictions correct

The purpose of this phase was simply to confirm that I had some useful information being extracted from the input
data. The initial results indicate positive confirmation that the model is in fact learning something that is useful in
prediction. The results are not directly usable for portfolio optimization which is why we need the next stage of
project, a portfolio allocation model.

Allocation Problem
Modifications to Model Architecture:
In order to generate an output of a portfolio allocation I’ve replaced the final layers of the previously mentioned
model with a new output layer with a SoftMax Activation resulting in an output vector summing to 1 with an element
for each equity (this can be thought of as a weighting of each equity in proportion to how profitable it is expected to
be).

The following 11 stocks with good (>50%) 2018 validation accuracy were selected to provide a representative
portfolio:

MANH, CLI, FULT, CMC, GGG, KMT, ZBRA, OI, TCBI, GDOT, JCOM

Loss Function
The Loss function designed for portfolio allocation is designed to reward profitable portfolio allocation while
severely punishing losses. As a result, the allocations will be slightly risk adverse and the degree of risk aversion is
possible to tune through adjustment of the Beta parameter below.

The loss function in this case is the negative profit earned in a timestep minus a negative value of losses if any
equities lost money in this step (resulting in an increase to loss). For my experiments Beta is set to 1 but could be
adjusted upwards to make the resulting model less risk adverse or downwards to encourage profit maximization.

Results
For validation purposes the model was trained on three years of data from 2015 through 2017 and tested on 2018
data. Finally, when the results looked positive the model was re-trained on 2015 through 2018 and tested on 2019.

Returns of a $1000 initial investment over the validation and test years are plotted below:

Model trained 2015-2017, Results on 2018 Data

Model 2018 Return: 27.9%, Balanced Return: -9.1%

Model trained 2015-2018, Results on 2019 Data

Model 2018 Return: 73.6%, Balanced Return: 16.9%

Over the course of 2018 my model was able to theoretically outperform a balanced portfolio of the stocks being
optimized before accounting for trading costs market impact and cost of crossing the bid-ask spread. In order to
capture a fraction of the value from these recommended allocations an agent should be designed to handle
execution in a more optimal way however the design and implementation of such an agent was out of scope for
this project.

Error Analysis:
The model performs poorly in a couple of important cases and my analysis provides insight into the causes as well
as potential optimization. During September-November 2018 for example a large loss is incurred. Analyzing the
time series of underlying equities, one sees that each of the stocks in the sample portfolio decreased over that time
making it impossible to prevent losses other than by removing money from the market, something the model does
not currently allow.

More interesting is the findings in early 2019 (Jan-May) that the model’s recommendations underperformed the
balanced portfolio. Analyzing that period shows that the growth of the balanced portfolio primarily came from one
equity, ZBRA which increased 53% in value from Jan 01 to April 8 and which our model allocated on average only
8.86e-04 % of the resources to. The likely root cause is that the ZBRA equity had not previously seen such rapid
growth and as such no predictive signals had been learned to indicate that it may be a beneficial time to invest
there, similar scenarios where a buying opportunity occur in

Conclusion
This project has demonstrated evidence that a deep learning approach to stock market portfolio allocation may
theoretically provide returns in excess of a balanced portfolio across equities before accounting for trading costs,
market impact and the cost of crossing the spread to take positions. The documented approach of applying a 2D
convolutional network to an input of features of many hundreds of equities over time allows the model to generalize
very well into the future with relatively strong performance up to 12 months after the training period.

The next logical step on this line of research is to incorporate the model into a Reinforcement Learning Agent
which can learn when it may be profitable to place orders based on the information that the model can extract from
the recent states of the market. Eventually even greater performance may be achieved by searching to optimize
the architecture of the convolutional layers of the model as well as investigating the impact of a wider and more
diverse set of features. Finally, the ability to hold a portion of the portfolio in cash promises an opportunity to
improve overall results and mitigate the large losses we see during down markets.

It seems that although past performance is no guarantee of future results, if you look both deeply and widely it
does offer some very useful and surprisingly robust information.

Contributions and References
All work for this project was done by Roy Justus with the guidance of Chris Waites.

Academic References
K. Khare, O. Darekar, P. Gupta and V. Z. Attar, "Short term stock price prediction using deep learning," 2017 2nd
IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology
(RTEICT), Bangalore, 2017, pp. 482-486.

L. Sayavong, Z. Wu and S. Chalita, "Research on Stock Price Prediction Method Based on Convolutional Neural
Network," 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), Jishou, China, 2019,
pp. 173-176.

A. Ariyo, A. O. Adewumi and C. K. Ayo, "Stock Price Prediction Using the ARIMA Model," 2014 UKSim-AMSS 16th
International Conference on Computer Modelling and Simulation, Cambridge, 2014, pp. 106-112.

Y. Hu and S. Lin, "Deep Reinforcement Learning for Optimizing Finance Portfolio Management," 2019 Amity
International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 2019, pp. 14-20.

T. Sanboon, K. Keatruangkamala and S. Jaiyen, "A Deep Learning Model for Predicting Buy and Sell
Recommendations in Stock Exchange of Thailand using Long Short-Term Memory," 2019 IEEE 4th International
Conference on Computer and Communication Systems (ICCCS), Singapore, 2019, pp. 757-760.

J. Eapen, D. Bein and A. Verma, "Novel Deep Learning Model with CNN and Bi-Directional LSTM for Improved
Stock Market Index Prediction," 2019 IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC), Las Vegas, NV, USA, 2019, pp. 0264-0270.

Non-Academic References
Thushan Ganegedara, “Market Predictions with LSTM in Python” January 1st, 2020. Retrieved from the internet at:
https://www.datacamp.com/community/tutorials/lstm-python-stock-market

Yacoub Ahmed, “Predicting stock prices using deep learning” Oct 11, 2019. Retrieved from the internet at:
https://towardsdatascience.com/getting-rich-quick-with-machine-learning-and-stock-market-predictions-
696802da94fe

Frameworks and APIs
TensorFlow 2.0:

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

Keras:

François Chollet, Keras, 2015 available at: https://github.com/fchollet/keras

Alpaca Python API, available at: https://github.com/alpacahq/alpaca-trade-api-python

Polygon.io Market Data, available at: https://polygon.io/

