Household Animals Classification Using Deep
Learning

Lei Lin*
Department of Computer Science
Stanford University
111978ru@stanford.edu

Abstract

Using deep learning to study household animals’ demeanor and body language, we
can find out if they are sick or not and provide necessary help in time. In order
to achieve this goal, we need to start with animal species classification. In this
project I will train one of the deep learning models, VGG, to distinguish between
images of cats and dogs. After using the Transfer Learning from VGG-16, the
accuracy can increase from 80% to over 95%. Then two ways of visualizing the
model outputs have been successfully demonstrated for more insight of the VGG
model.

1 Introduction o 4
Recently, animal detection for wildlife has been \F&«
an area of great interest among biologists. Since &
there are many species, manually identifying |
them can be a daunting task. So, a deep learning Deploy
algorithm that classifies animals based on their
images can help monitor them more efficiently.
A further possible application of this technol-
ogy can be used to identify certain species’ be-
haviors. Using deep learning to study animals, Fjgure 1: the demonstration of deep learning on
especially household animals’ demeanors and 4pima] classification[1].

body language, we may know if they are sick or

not and provide necessary help and treatment in

time. All these challenges necessitate an efficient algorithm for classification. In this project, Dogs
vs. Cats, the data set from Kaggle will be applied on the VGG models that I made from scratch. In
order to further improve the accuracy, the transfer learning will be used in this project. To gain more
insight of the VGG models, I will demonstrate the methods of visualizing the model outputs.

2 Related work

Related works about animal classification were published in regard of wild animal monitoring [2-5].
The authors used convolutional neural networks to create models for animal species identification.
Similarly, convolutional neural networks were used to recognize 20 species common in North
America [6]. Another approach was taken for classifying different animals in automating species

*SCPD student; https://www.linkedin.com/in/leilin/

CS230: Deep Learning, Winter 2020, Stanford University, CA.

recognition[7]. The authors enforced ScCSPM (Sparse coding Spatial Pyramid Matching) to extract
and classify animal species over a 7 thousand image data set. After that multi-class pre-trained SVMs
were applied to classify global features of animal species. All mentioned authors follow a similar
pattern when using machine learning for image classification, but none of them concern household
animals. Also, most of them lack the application of visualization technique. This technique gives
insight into what types of features deep neural networks are learning at specific layers in the model

and provides a debugging mechanism for improving a model.

3 Dataset and Features

In this project, the data set is from Kaggle [8],
which provides 25,000 labeled photos: 12,500
dogs and the same number of cats. Out of all
the photos, 16% are for validation, 4% for test-
ing, and the remainder for training. Kaggle also
provides unlabeled photos for testing in another
folder. The images (Fig.2) are of non-uniform
size (averaged around 350 x 500) and varying
image quality. Some of them are grayscale, and
some files are corrupted, making them unread-
able. Additionally, the perspective can differ
from faces to full-body. In some images, part of
the animal is obstructed from view, and others
contain more than one of the same animals.

4 From VGG-6 to VGG-16

4.1 Develop a simple CNN model

The baseline CNN model is from the general
architectural principles of the VGG [9] models.
The architecture involves stacking convolutional
layers with small 3 x 3 filters followed by a
max pooling layer. Together, these layers form
a block, and these blocks can be repeated where
the number of filters in each block is increased
with the depth of the network such as 32, 64,
128, 128 for the first four blocks of the model.
Padding is used on the convolutional layers to
ensure the height and width shapes of the out-
put feature maps matches the inputs. Each layer
uses the ReLU activation function. The model
(Fig.3) has been fit with RMSprop optimizer
which is similar to the gradient descent algo-
rithm with momentum.

4.2 Transfer Learning from VGG-16

A more refined method would be to utilize a
network which is pre-trained on a large dataset.
This network would have already learned fea-
tures that are useful for solving various prob-
lems such as Image Classification and Object
Detection. This method would allow us to ob-
tain better accuracy. Transfer learning involves
using all or parts of a model trained on a related
task. A useful model for transfer learning is one
of the VGG models, such as VGG-16 [10] with

Figure 2: Dogs vs Cats from Kaggle[8].

‘ Conv2d 1 input: InputLayer ‘
¥
| Conv2d 1: Conv2D |

¥
| max_pooling2d 1: MaxPooling2D ‘

| Conv2d 2: ConvZD |

¥
| max_pooling2d 2: MaxPooling2D ‘

| Conv2d_3: Conv2D |

¥
| max_pooling2d 3: MaxPooling2D ‘

| Conv2d 4: Conv2D |

¥
| max_pooling2d 4: MaxPooling2D ‘

| flatten_1: Flatten |
¥

| dense 1: Dense |
¥

| dense 2: Dense |

Figure 3: The structure of VGG-6

16 layers. I use the feature extraction part of the model and add a new classifier part that is tailored to
the Dogs vs. Cats dataset. Specifically, I held the weights of all the convolutional layers fixed during
training, and only train new fully connected layers that will learn to interpret the features extracted
from the model to make a binary classification.

4.3 Accuracy and Loss

The overfit is observed from my initial VGG-6 model. Therefore, I modify the baseline model
through Dropoff and Data augmentation. The training accuracy is above 80% and validation accuracy
is around 86% with the loss lower than 0.4 (red curves in Fig. 4). We could keep tuning the network
to improve training accuracy by lowering the Dropout rate a bit and to train more. But I guess we’re
not going to be able to reach 95% on this dataset.

The VGG-16 base model (black curves in Fig. 4) with data augmentation can significantly improve
the training performance. Reviewing the learning curves, we can see that the model fits the dataset
quickly at the first 20 epochs. The training accuracy comes out to be around 90% and the validation
accuracy being 91%. To further improve the accuracy, we can fine-tune the weights of some layers
in the feature detector part of the model. In this project, we unfreeze from the layer *block5_conv1’
along with our Dense layers, resulting in more than 95% validation accuracy (blue curves in Fig.4).
Applying fine-tuning allows us to utilize pre-trained networks to recognize classes they were not
originally trained on, reducing the loss to 0.1.

Training (tra) vs Validation (val)

1.0 1.0

"""" VGGO06_base_val
et VGGO6_base_tra
T 08— 1 | | VGG16_base_val
VGG16_hase_tra
VGG16_fine_val
VGG16_fine_tra

©
©

©
o

Loss

- VGG06_base_val

Accuracy

0.4 VGGO6_base_tra
-------- VGG16_base_val
VGG16_base_tra | | e
O VGG16_fine_val —
VGG16_fine_tra
005 20 40 60 80 100 0.9 20 40 60 80 100
Epochs Epochs

Figure 4: The result of training and validation from VGG model

5 Understanding the Convolution Network with Visualizations

Visualizing the output of the model is a great way to see how its progressing. While training
deep networks, most people are only concerned with the training error(accuracy) and validation
error(accuracy). Judging these two factors does give us an idea of how our network is performing at
each epoch. When it comes to deep CNN networks like VGG-16 there is so much more that we can
visualize, thus allowing us to learn about network architecture.[11] In this project, I will demonstrate
two ways of visualization the model outputs (intermediate as well as final layers), which can help us
gain more insight into working of the model.

5.1 Visualizing Intermediate Layer Activations

For understanding how the deep CNN model is able to classify the input image, we need to understand
how my model sees the input image through studying the output of its intermediate layers. By doing
so, we are able to learn more about the workings of these layers. On the following part, I will pick an
image of a dog and to try to see what will be the visualized outputs from some of the intermediate
convolution of the trained VGG-6 model.

If we take a look at the different images from Convolution layers filters, it is pretty clear to see how

Conv2d 1

o 500 1000 1500 2000

Conv2d 2

Conv2d 3

Figure 5: The filters from conv2d_1, conv2d_2 and conv2d_3 by running the trained VGG like model
on one of the test images.

different filters in different layers are highlighting or activating different parts of the image (see Fig.5).
The first layer acts as a collection of various edge detectors. At that stage, the activations are still
retaining most of the information present in the initial picture. As we go higher-up, the activations
become increasingly abstract and less visually interpretable. They start encoding higher-level concepts
such as "dog ear" or "dog eye". Higher-up presentations carry increasingly less information about the
visual contents of the image, but adding more information related to the class of the image to the
model. The sparsity of the activations increases with the depth of the layer: in the first layer, all filters
are activated by the input image, but in the following layers more and more filters become blank,
meaning that the pattern encoded by the filter is not found in the input image.

By visualizing the output from different convolution layers in this manner, the most crucial thing is
that the layers deeper in the network visualize more training data specific features, while the earlier
layers tend to visualize general patterns like edges, texture, background, etc. This knowledge is very
important when we use Transfer Learning whereby training some part of a pre-trained network on a
completely different dataset. The general idea is to freeze the weights of earlier layers because they
will anyways learn the general features. This is to only train the weights of deeper layers which are
actually recognizing our objects.

5.2 Visualizing Heatmaps of Class Activations

While predicting the class labels for images, sometimes the model will predict the wrong label for the
class, i.e. the probability of the right label will not be maximum. In such cases, it will be helpful

if we could visualize the parts of the image the convnet looking at to deduce the class labels. The
general category of such techniques is called Class Activation Map (CAM) visualization. CAM
can produce heatmaps of class activations over input images [12]. A class activation heatmap is
a 2D grid of scores associated with a particular output class. It is computed for every location
of an input image, indicating how important each location is with respect to that output class.
The Global Average Pooling layer (GAP)

is preferred over the Global MaxPooling

Layer (GMP) which is used in VGG-16

model because GAP layers help to identify

the complete extent of the object as com- .,
pared to GMP layer which only identifies
the discriminative part. This is because
in GAP we take an average across all the
activation that helps to find all the discrim-
inative regions while the GMP layer only
considers the most discriminative one.

In fig.6, you can see how this technique
works. Start from top two plots. At the
early training phase, the model seems to
randomly pick up interest locations, plot-
ting heatmap points by chance. As the
training moves forward, the model slowly
converges on the dog face and paws with =
the accuracy of 99.99%. At the end, the

heatmap finally captures the entirety of the

dog face with the output of 100% accuracy.

So basically, what the heatmap is trying

to tell us is the important locations in the Figure 6: The demo of CAM visualization
image for that particular layer to classify it

as the target class, which is dog in this case. I have uploaded one small video onto YouTube*, which
demonstrates how the CAM works from the beginning to the end.

.
- ® v -

L

A
dog 99.99%
&

100

100 200 500

6 Conclusion and Future Work

In this report, I discussed how to train a CNN model to classify Dogs vs. Cats images. I trained the
models from scratch at first and then using Transfer Learning, I got over 95% accuracy. Meanwhile,
two ways of the model outputs visualization have been demonstrated, which can help us gain more
insight into how the model works.

One of the original tasks for this project is applying the CNN model to detect whether animals or
pets are sick or not? In real life, it may be difficult to know if subtle changes in the animals indicate a
health problem. Using the CNN model, I may be able to keep track of animals’ behavior in order to
prevent extreme illnesses. The discharge from eyes or nose may indicate a possible upper respiratory
infection; or skin irritation or hair loss may be a sign of allergies, external parasites, or another skin
condition. Because of the time limitations, I did not collect enough dataset for this kind of study. For
the future works, I will keep collecting datasets for a month or a year in order to find the correlation
between illnesses and animal behavior. Through the deep learning model, I will be able to predict the
probability of a symptom for every animal picture or video. Future work might also include robotic
systems that monitor the state of the household animals, adjust food distribution depending on image
readings or alert when the animals from any kind of illness.

Moreover, different types of models can be employed to see, which one fits the needs the most. The
project shouldn’t be limited to VGG models.

GitHub and YouTube Links*

https://github.com/111978ru/CS230-Project
https://www.youtube.com/watch?v=FUXkRUopilw&t=3s

https://github.com/ll1978ru/CS230-Project
https://www.youtube.com/watch?v=FUXkRUopilw&t=3s

References

[1] McDonald, C. (2017) Demystifying Al, Machine Learning and Deep Learning.
https://mapr.com/blog/demystifying-ai-ml-dl/

[2] Gomez, A. Salazar, A.& Vargas, F. (2016) Towards automatic wild animal monitoring: Identification of
animal species in camera-trap images using very deep convolutional neural networks.
https://arxiv.org/pdf/1603.06169.pdf

[3] Favorskaya, M. & Pakhirka, A. (2019) Animal species recognition in the wildlife based on muzzle and shape
feature using joint CNN. Procedia Computer Science 159:933-942.

[4] Zaitoon, A. (2018) Deep learning for Animal Identification.
https://github.com/A7med01/Deep-learning-for-Animal-Identification

[5] Mitrev, D. (2018) Automated Animal Identification Using Deep Learning Techniques.
https://medium.com/coinmonks/
automated-animal-identification-using-deep-learning-techniques-41039£2a994d

[6] Chen, G. Han, T. X. He, Z. Kays, R. & Forrester, T. (2014) Deep convolutional neural network-based species

recognition for wild animal monitoring. International Conference on Image Processing (ICIP) IEEE
2014:858-862.

[7] Yu, X. Wang, J. Kays, R. Jansen, P. A. Wang, T. & Huang, T. Huang (2013) Automated identification of
animal species in camera trap images. EURASIP Journal of Image and Video Processing 2013:52

[8] Dogs vs. Cats. https://www.kaggle.com/c/dogs-vs-cats/data

[9] Simonyan, k. & Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image
Recognition. https://arxiv.org/abs/1409. 1556

[10] Tewari, S. (2019) CNN Architecture Series — VGG-16 with implementation
https://medium.com/datadriveninvestor/
cnn-architecture-series-vgg-16-with-implementation-part-i-bca79e7db415

[11]Paliwal, A. (2018) Understanding your Convolution network with Visualizations
https://towardsdatascience.com/
understanding-your-convolution-network-with-visualizations-a4883441533b

[12] Mishra, D. (2019) Demystifying Convolutional Neural Networks Using Class Activation Maps
https://towardsdatascience.com/
demystifying-convolutional-neural-networks-using-class-activation-maps-fe94edadcefl

https://mapr.com/blog/demystifying-ai-ml-dl/
https://arxiv.org/pdf/1603.06169.pdf
https://github.com/A7med01/Deep-learning-for-Animal-Identification
https://medium.com/coinmonks/automated-animal-identification-using-deep-learning-techniques-41039f2a994d
https://medium.com/coinmonks/automated-animal-identification-using-deep-learning-techniques-41039f2a994d
https://www.kaggle.com/c/dogs-vs-cats/data
https://arxiv.org/abs/1409.1556
https://medium.com/datadriveninvestor/cnn-architecture-series-vgg-16-with-implementation-part-i-bca79e7db415
https://medium.com/datadriveninvestor/cnn-architecture-series-vgg-16-with-implementation-part-i-bca79e7db415
https://towardsdatascience.com/understanding-your-convolution-network-with-visualizations-a4883441533b
https://towardsdatascience.com/understanding-your-convolution-network-with-visualizations-a4883441533b
https://towardsdatascience.com/demystifying-convolutional-neural-networks-using-class-activation-maps-fe94eda4cef1
https://towardsdatascience.com/demystifying-convolutional-neural-networks-using-class-activation-maps-fe94eda4cef1

	Introduction
	Related work
	Dataset and Features
	 From VGG-6 to VGG-16
	Develop a simple CNN model
	Transfer Learning from VGG-16
	Accuracy and Loss

	Understanding the Convolution Network with Visualizations
	Visualizing Intermediate Layer Activations
	Visualizing Heatmaps of Class Activations

	Conclusion and Future Work

