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Abstract

In this work, we propose a deep learning pipeline for training neural networks that
can accurately approximate attributes in three-dimensional seismic datasets. Using
generative adversarial modeling, we train specialized networks that learn to map
attributes, given an amplitude seismic volume as input. The trained network is used
to compute transformations in original data much faster than its exact formulation
since inference time is rapid in modern GPU architectures. Initial results show
that deep neural networks are robust to learn different attributes with distinct data
distributions. Via model inference, attribute computations is up to 80x faster than
classical formulation.

1 Introduction

One major goal in seismic data analysis is the detection of geologically relevant structures. Sub-
surface properties, such as faults, channels and other events contain valuable spatio-temporal infor-
mation with scientific and commercial importance. There is a compelling need in the identification of
these features in an accurate and efficient way so that the chronostratigraphy of the area of interest is
well understood. The underground analysis can be significantly improved by the use of automatic
or semi-automatic interpretation tools. In this context, seismic attributes contribute to the process,
highlighting regions that may be hard to visually identify, reducing decision-making time.

A seismic attribute is any measure of seismic data that helps us visually enhance or quantify features
of interpretation interest. A good attribute is either directly sensitive to the desired geologic feature
or reservoir property of interest or allows us to define the structural or depositional environment [1].
Mathematically, a seismic attribute is a mapping An(D) ∈ R3, given an input amplitude volume
D ∈ R3 (Figure 1). The formulation of transformation An depends upon the characteristics that
aimed to be enhanced in the data. For instance, if we want to identify sharp edges, one may apply the
Sobel filter [2], with a similar mathematical definition used in image processing.

A challenge in attribute calculation is processing time. Seismic surveys may reach terabytes, and
when particular transformations involves sophisticated formulations (e.g. frequency domain attributes
need Fourier transforms), computing time may significantly increase, taking hours to process the
entire dataset.
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Figure 1: Examples of seismic attributes: original amplitude volume (D) serves as input for A1, A2,
and A3 transformations.

We are proposing a deep learning (DL) training pipeline based on conditional Generative Adversarial
Networks (conditional GANs) [3] to learn the mapping pattern of attributes. One network is trained
for each An mapping. These models are used for calculations (inference) at unseeing volumes. The
main advantage of this approach is the fact that we have a linear time to compute any type of seismic
attribute, depending only on volume size.

2 Related work

Machine learning (ML) models are being used by the geosciences community for a while. The
most common algorithms are classical unsupervised approaches like K-Means, Principal Component
Analysis (PCA), and Self-organizing Maps (SOM) to categorize traces waveforms [4]. We also
find in literature ML seismic attributes used to enhance faults, channels and other discontinuities
with unsupervised learning methods [5]. More recently, DL approaches are being applied to a range
of different applications in geophysics, such as fault detection with convolutional neural networks
(CNN) [6], full-waveform inversion [7], and relative geological time attributes [8]. Researchers are
also exploring more sophisticated models, such as GANs, to improve seismic data resolution [9] and
perform noise attenuation [10].

3 Dataset and Features

Seismic datasets are usually computationally represented as 3D scalar fields, being each voxel of the
volume a 32-bits floating point (amplitude). This data has visual coherence, and we can understand it
as RMI scans of Earth’s subsurface. The Society of Exploration Geophysics (SEG, [11]) and the U.S.
Geological Survey (USGS, [12]) made available online repositories with major surveys from onshore
and offshore areas around the globe. We collected seismic datasets stacked by different processing
methods from different regions, as depicted in Table 1.

Dataset Name Geography Size (GB) Grid Dimension

Poseidon3D Australia 5.2 (583× 2351× 945)
Parihaka3D New Zealand 3.9 (870× 1040× 1080)

SantaYnez3D_1 United States 2.1 (389× 1074× 1260)
SantaYnez3D_2 United States 1.5 (262× 1163× 1176)
NorneFiled2006 Netherlands 1.1 (321× 1001× 851)

Table 1: Used seismic surveys.

SantaYnez3D_2 and NorneField2006 were selected as development datasets. Others were reserved
for training. We processed all surveys using the open-source interpretation software OpenDetect
(OD) [13]. This processing generates transformed volumes, which serve as outputs for our supervised
learning pipeline. We have chosen attributes with distinct data distributions. For each survey in
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Table 1, we generated the respective Energy, Instantaneous Phase and Coherence attributes [1].
After cropping the volumes to select most relevant areas, and computing the attributes, training and
development set summed up a grand total of 55.2 GB, stored as SEG-Y [14] files.

4 Method

In this work, we are interested in developing a generative framework that could be used to replace
direct seismic attributes calculations. To reach this goal, some requisites must be met: a) real-time or
interactive-time inference is desired, b) pixel-wise approximations with small errors (10−3 or less), c)
one trained network per attribute, and d) network must perform attribute computations respecting the
ground-truth as much as possible, avoiding creating new patterns, even with same data distribution.

To achieve the requirements, we use as baseline the conditional GANs proposed by Wang et. al. [15].
This network operates on high-definition image patches, which helps saturate the PCIe bus between
CPU-GPU, increasing the inference performance, which is important to achieve real-time inference.

4.1 Architecture

The network consists of conditional GANs, with coarse-to-fine generators G = {G1, G2} and
multi-scale discriminators D = {D1, D2, D3}. In our task, the objective of the generator G is to
translate input seismic images to attributes, while the combined discriminator D aims to distinguish
real attributes from translated ones. The framework operates in a supervised setting: the training
dataset is given as a set of pairs of corresponding images {(si,ai)}, where si is the input, and ai is
the respective attribute. Conditional GANs, applied to our problem, aim to model the conditional
distribution of attributes, given an input seismic image via the following minimax game [15]:

minG maxD1,D2,D3

∑
k=1,2,3

LGAN (G,Dk), (1)

where the objective function LGAN (G,Dk) is given by:

E(s,a)[logDk(s,a)] + Es[log(1−Dk(s, G(s))]. (2)

Coarse-to-fine-generator The generator is decomposed into two sub-networks, G1 and G2. The
term G1 refers to the global generator network and G2 corresponds to the local enhancer. Specifically,
the input to the residual blocks in G2 is the element-wise sum of feature map from G2 and the last
feature map from G1. This generator design promotes an effective aggregation between global and
local information during the image synthesis task.

Multi-scale Discriminators There are some important challenges training GAN discriminators in
high-resolution image synthesis. To differentiate real and synthesized images, the discriminator
needs a large receptive field. This leads to deeper networks with larger convolution kernels, which
may generate model overfitting. To deal with this problem, 3 discriminators with identical network
structures are used. Each discriminator operates in different lower-resolution scales, improving the
ability of final discriminator D = {D1, D2, D3} to distinguish real and synthesized samples.

4.2 Implementation Details

The original network was built to translate semantic labels into photo-realistic images. We adapt the
original network as follows: a) we changed initial layers to receive 1-channel 32-bits images, instead
of discrete semantic labels, b) removed the restriction to feed the network with boundary maps and
instance maps, and c) disabled the instance-level control, used to diversify the image synthesis for a
given semantic label map.

Since we are working with training samples having data distribution different from ordinary natural
images, all networks are trained from scratch. Thus, performance is a crucial factor. One major
bottleneck in training pipelines at multi-GPU servers is data ingestion and manipulation. We have
implemented a high-performance parallel data ingestion engine that extracts random samples from
SEG-Y files. The volume reader was built on top of Equinor’s Segyio library [16]. Random crops
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with fixed size (512× 512) are extracted in parallel from the original data and passed to the GPU.
In GPU, we perform the following data augmentations: polarity inversion (seismic specifics), flip,
rotation, scaling, and normalization.

5 Experiments and Results

In this section, we present the obtained results training different conditional GANs used to translate
seismic images to attributes. For each type of attribute, we have trained dozens of networks using
servers with 8x NVIDIA Tesla V100 GPUs and select the best models. Each training cycle takes up
to 2 days to run. All implementations were done using the DL framework PyTorch [17].

To ensure maximum GPU usage and thus a lower training time, we have set the batch-size as the
higher possible value, which is 160. Therefore, the GPU memory occupancy reaches a peak of 99%.
Seismic domain images have lower data variability, in comparison with the universe of natural images.
The fact we are dealing with 1-channel images reinforce this hypothesis. Therefore, optimizing a
seismic-to-attribute network is simpler than a label-to-image task. We verified that none of the used
metrics improved after 100 epochs. Thus, we reduce the total number of epochs to 100. We kept the
same learning rate for the first 50 epochs and linearly decay the rate to zero over the next 50 epochs.

As a comparison baseline, we have reproduced one of the latest works on DL to seismic attributes
and compared them with our approach. Geng et. al. [8] proposed a U-Net architecture using residual
blocks and refinement convolutions to map the Relative Geological Time (RGT) attribute. Since
no source code was released, we have implemented a version of their work in Keras [18], strictly
following the instructions provided in the paper. Code is under directory dsa_final/rgt. In Table
2, we show metrics comparing the proposed GAN architecture (Ours) with the aforementioned work
(RGT). Results show consistent superiority of GAN over a deep U-Net for regression.

In Table 2 (Ours), we also show metrics collected from the development set: mean squared error
(MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). The MSE and PSNR
correlate numerical differences between the original and synthesized attributes, while the SSIM
emphasizes the perceptual divergences. From the numerical point of view, the worst result was
achieved by the Instantaneous Phase network. This dataset presents a high-variance in voxel intensity
(high-frequencies), which is naturally harder to capture, even for more advanced DL models. Further-
more, the high variability in values of neighboring voxels contributed (in absolute value), to increase
the MSE, which the PSNR depends on.

Attribute MSE (RGT) PSNR (RGT) MSE (Ours) PSNR (Ours) SSIM (Ours)

Semblance 1× 10−2 17.06 1× 10−3 29.64 0.94
Phase 6× 10−2 11.65 9× 10−3 20.31 0.93
Energy 1× 10−3 28.8 8× 10−5 40.82 0.98

Table 2: Quantitative results on development set (SantaYnez3D_2 & NorneField2006). We compare
our results with the RGT architecture proposed by Geng et. al. [8].

When we visually compare the real and synthetic samples in Figure 2, we verified that differences
are hard to identify. All networks were able to capture the high-level features satisfactorily. This
leads to the conclusion that global generator G2 performed well for all cases, but local enhancer
had difficulty to properly approximate narrow high-frequencies (Fig. 2, right-side). One way to
improve the low-level feature generation is appending a third sub-network G3. Thus, we would
starting training the new coarse generator G3 at images with (128× 128) resolution, and gradually
increase the feature map size to (256× 256) and (512× 512), training G2 and G1.

We use a single Tesla V100 with 32GB to perform inference experiments. In Table 3 we depict
the total time to compute the attributes using its exact formulation with OpenDetect (OD) [13], and
inference with the proposed network. Attribute calculus with OD ran on a machine with 12 cores. The
time to compute attributes with OD takes, on average, 56.22 seconds for NorneField2006 and 68.11s
for SantaYnez3D_2 dataset, while it only takes 0.70s and 0.86s, respectively, with our DL approach.
The speedup achieved was around 80x times. This real-time performance may be a gaming-changing,
when attributes over terabytes of data must be computed.
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Dataset Phase Energy Semblance OD Average Time Ours Speedup

NorneField2006 59s 25s 84s 56.22s 0.70s 80.47
SantaYnez3D_2 67s 27s 110s 68.11s 0.86s 79.57

Table 3: Attribute computation using OpenDetect and the proposed work. Network inference is 80x
faster than conventional approaches.

Figure 2: Results of conditional GANs trained to compute Semblance (top), Instantaneous Phase
(middle) and Energy (bottom) seismic attributes. The overall image structure is well captured. Local
features present minor differences in expanded regions of interest (right panels).

We get to the conclusion that conditional GANs can successfully approximate the computation
of seismic attributes, with high visual fidelity, and minor numerical differences. The presented
architecture may operate as a universal attribute calculator, with some restrictions. For a high-quality
numerical reconstruction, we must specialize the model and properly adjust the architecture and tune
the hyperparameter space to fit each data. This effort may be worthwhile if we have an attribute that
its exact computation takes hours, and processing time needs to decrease to seconds.

6 Conclusion/Future Work

In this work, we explored the use of conditional GANs to compute seismic attributes in volumetric
datasets. The trained networks were used to infer attributes quantities at unseeing surveys, reaching
real-time performance. Quantitative and qualitative results show that a single GAN architecture can
be satisfactorily trained to learn the mapping of different attributes, but with minor errors. If we
want minimal numerical differences between original and reconstructed volumes, we should tune and
specialize the model. As future work, we intend to explore the use of 3D convolutions and experiment
different network architectures.
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