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Abstract

In the wake of a natural disaster, the need for actionable information towards a damaged
area is critical. Before rescue groups can take action, volunteers must manually identify the
location and classify the damage of the affected buildings. The XView2 organization cites
this as a main analytical bottle-neck in a post-disaster workflow. Inspired by their challenge,
our project aims to automate the process of assessing building damage post-disaster and
enable a speedy and resource-efficient response operation. Our hypothesis is that graph-
based learning should be effective given the spatial properties of natural disaster damage.
Trained on high resolution satellite imagery, location, and temporal data, we designed a
hybrid GCN + CNN model to classify damage-lvl of each building effectively. Our results
were conclusive - showing a drastic boost in results over XView’s provided baseline.

1 Introduction

According to the UN’s DRR office, the world has seen a dramatic increase in the number of natural disasters
in the last 20 years [1, 2, 3]. The brunt of the burden is experienced by poorer countries both in economic
cost and lives lost. One month ago, for example, Taal Volcano, the Philippine’s most active volcano, erupted
and caused an estimated $63M in damage to physical structures in nearby plantations, farms, and cities. Fast,
automated post-disaster analysis is then crucial. We believe in the shift from a slow human-annotated building
assessment process to a rapid deep learning system. In order to realise this, we propose using state-of-the-art
CNN models to vastly enhance the identification and classification of these disaster-stricken areas and let
human response teams focus on what they do best.

The input data to our proposed algorithm is a set of high resolution, RGB satellite overhead imagery spanning
19 natural disaster-stricken areas. Figure 1 shows the satellite imagery examples of pre and post disaster
images. The baseline model is provided by XView2 [5]. Our goal is to improve upon this with graph-based
techniques. The proposed model is hybrid deep learning model with satellite images trained on 1) a Graph
Convolutional Network for spatial classification of damage based on neighbor buildings and 2) A Resnet-50
classifier from the XView2’s baseline with its upper-half trained on satellite image data and its lower half
frozen to preserve lower-lvl features captured by imagenet; its output consist of annotated-versions of the
satellite imagery, specifically with masked colored polygons to identify specific buildings in the area and a
rating number signifying the level of damage a building sustained post disaster.

2 Related work

The exploration of deep learning models on satellite imagery has been used for a variety of different important
tasks ranging from counting cars and mega-city planning to classification of land cover and crop types
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Figure 1: Training data sample from DigitalGlobe disaster image sources [4]
L-R: Hurricane Harvey; Joplin tornado; Lower Puna volcanic eruption; Sunda Strait tsunami.

Top Row: Pre-disaster, Bottom Row: Post-disaster

[6, 7, 8, 9, 10, 11]. These satellite deep learning models are generally multi-layered Convolutional Neural
Networks, combining and building upon state-of-the-art CNN models.

In addition, deep learning has been implemented extensively for building damage assessment utilizing various
types of both aerial overhead and ground-based imagery [12, 13, 14, 15, 16, 17, 18, 19]. For example, Duarte
et al. [15] used multi-resolution satellite imagery and CNNs for damage building assessment. By combining
satellite imagery with overhead imagery obtained from both manned and unmanned aerial vehicles the authors
were able to implement a CNN to classify a building in damaged or undamaged categories. The model,
however, requires additional images that may be difficult to obtain and limits classification to a binary category.
The proposed method makes no requirement on additinal data and provides a more nuanced damage assesment.

3 Dataset and Features

The xView2 [5] challenge provided the xBD dataset [4], which is the largest and highest quality public data set
of expertly annotated high-resolution satellite imagery available online. The data consists of 850, 736 buildings
in 22, 000 images spanning 45, 361 square kilometers for 19 disaster events, namely the Guatemala Volcano,
Hurricane Harvey, Mexico Earthquake, Midwest Flooding, Palu Tsunami, and many others. The image data is
paired with a labeled data set of corresponding information such as image uid, coordinates (latitude, longitude),
building label, damage classification (0- No Damage, 1- Minor Damage, 2- Major Damage, 3- Destroyed), and
wkt polygon shape for the buildings.

4 Methods

Let S = {s1, s2, ...sK} be a set of K satellite images, where each image can have a varying number n
of individual building sub-images {x1, x2, ...xn} ∈ si of varying sizes as well. Further, let G(V,E) be a
graph structure, where each node vi ∈ V corresponds to an xi building sub-image and each edge eij ∈ E
represents whether buildings vi and vj occur within a predefined threshold distance in satellite image sk.
Each node is defined by m features such that v ∈ <m. A model is proposed such that f(xi, vi) → yi,
where yi ∈ {0, 1, 2, 3} corresponding to no damage, minor damage, major damage and destroyed categories,
respectively.

The proposed model f(·, ·) is defined as a combination of a Convolutional Neural Network and a Graph
Convolution Network [20]. The proposed model is formerly defined as

f(vi, xi) = F (Wk · σ([Wk−1 ·AGG(hk−1
u ,∀u ∈ N(vi)), C

k−1(xi)]))) (1)

, where u represents the nearest neighbors of v and AGG(hk−1
u ,∀u ∈ N(vi)) is the GCN component of the

model while Ck−1 represents the CNN component.
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The GCN component is defined as in [20], adding an additional mask function to ensure that only activations
of vi and neighbor(s) u are concatenated with CNN feature maps corresponding to vi. The mask function is
simply the row of the adjacency matrix, Avi,:, pertaining to vi.

AGG(hk−1
u ,∀u ∈ N(vi)) = Avi,: ·RELU(Â ·RELU(Â ·XWk−1)Wk) (2)

, where Â = D̃− 1
2 ÃD̃− 1

2 is the normalized adjancency matrix. The Ã = A + IN represents an adjacecny
matrix of an undirected graph G with added self connections. The D̃ii =

∑
j Ãij represents the degree of each

node within graph G. The adjacency matrix is defined by the graph structure created by the buildings in the
immediate proximity of the building of interest. The spatial information provides additional key information
on disaster impact within a geographic location. A masking function ensures the specific information of a
building of interest is isolated to be combined with a CNN model.

The CNN component Ck−1 is comprised of the Resnet-50 model [21] previous trained on imagenet data [22]
with the lower half of the layers frozen to preserver low level features such as edges and shapes that can be
used to identify buildings in an image. Three additional convolutional layers are added before the Resnet-50
model and three dense layers are added after as in [5] to fit the image data set better.

As shown in Figure 2, the two components are concatenated together into a dense layer σ allowing for
non-linear aggregation and activation. A softmax layer F is subsequently utilized to provide a probability
distribution for each category in the building damage assessment.

Figure 2: Our Hybrid GCN-CNN architecture

Allowing f(ui, xi) = ŷi, a categorical cross-entropy loss function defined as

Lf = − 1

n

∑
c

∑
i

(y(i,c)log(ŷ(i,c)))

is then minimized accross the different categories c to train the corresponding weights of the previously
described GCN and CNN models.

5 Experiments/Results/Discussion

The proposed model was trained and evaluated using≈ 10, 000 satellite images with over 200, 000 pre-defined
building sub-images. The localization of these building sub-images is outside the scope of the current project
with the intent on further investigating in future works. Spatial information was used to define a graph sturcture
G(U,E) in the following manner

1. For each satellite image sk, define every building/structure sub-image xi as a node ui ∈ U in G.
2. Compute the centroid c of each ui within each satellite image sk.
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Table 1: Model Performance for Damage Classification

Damage Type Model Precision Recall F1

No CNN Baseline 0.857 0.451 0.591
Damage ReFeX + XGBoost 0.664 0.866 0.752

GCN + CNN 0.931 0.943 0.937
Minor CNN Baseline 0.073 0.484 0.127

Damage ReFeX + XGBoost 0.485 0.290 0.363
GCN + CNN 0.447 0.411 0.428

Major CNN Baseline 0.242 0.093 0.134
Damage ReFeX + XGBoost 0.642 0.388 0.484

GCN + CNN 0.549 0.466 0.504
Destroyed CNN Baseline 0.420 0.623 0.502

ReFeX + XGBoost 0.612 0.446 0.516
GCN + CNN 0.744 0.777 0.760

3. d = Euclid(ci, cj) of each ui and uj in satellite image sk.

4. if d < θ for some pre-defined threshold θ then eij = 1,∀ei,j ∈ E.

After G was generated, spatial recursive feature extraction algorithm (ReFeX) [23] was ran yielding 38 features
per node. A feature matrix was constructed from the node features and was used in the training of the GCN
algorithm in conjunction with the adjacency matrix from G.

A CNN was concurrently trained using pixel data from building sub-images xi. Transfer learning was leveraged
using a Resnet-50 model, trained on the imagenet [22] data set. The lower half of the Resnet-50 model weights
were frozen to take advantage of the low level feature maps including edges that distinguish between different
objects. The upper portion was trained to provide feature maps specific to damaged buildings. The proposed
algorithm’s parameter count was

• Total params: 124,284,320

• Trainable params: 121,795,616

• Non-trainable params: 2,488,704

To mitigate the unbalanced data sets, data points were weighted as an inverse of the number of data points
available per class in the cost function to provided more significance to sparse classes. In addition, data
augmentation was performed with each data point having a corresponding augmented data point. The
augmentation focused on image properties that are inherent within satellite imagery data: 1) horizontal flip, 2)
vertical flip, 3) width shift, 4) height shift. The model was ran for 100 epochs with hyper-parameter tuning of
dropout rates of {0.3, 0.5, 0.7} and batch size {32, 64, 300, 400}.
Batch Normalization was implemented on convolutional layers in order to improve training time while dropout
was used on dense layers to mitigate over-fitting issue.

5.1 Baseline CNN Architecture

XView2’s baseline classification architecture is built upon a Resnet-50 [21] CNN model, trained on imagenet
[22] data with all layers frozen. Three trainable convolutional layers are concatenated with the Renet-50 results
and passed to three trainable dense layers with a RELU output function to classify the building damage into
one of the 4 classes:No Damage, Minor Damage, Major Damage, Destroyed.

5.2 Classical ML approach

In order to compare performance of various techniques, we also experimented with graph-based feature
extraction and decision-tree based damage classification. As seen in figure 3, our ReFeX-XGBoost method
combines graph-based recursive feature extraction [23, 24] and XGBoost [25] based node classification
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technique. XGBoost algorithm was used on node features & labels derived from graph G(V,E) to train a
multi-class classifier. Our results show a modest improvement over the baseline and are presented in 1.

Figure 3: Our ReFeX-XGBoost architecture

5.3 Error Analysis

The proposed model performed quite well on identifying no damage buildings. Although the model performed
better than the other models, it continues to lag in major, minor, and destroyed categories. This was especially
true for major and minor damage, where it performed with an F1 score no better than 50%. The most plausible
reason for this discrepancy is the unbalanced data, with the "no damage" category having at least a 10 to 1
ratio as compared to the other categories. Although data augmentation and class weighting mitigated some of
this imbalance, it did not complete remove it. The collection of more data for the under represented categories
should assist in overcoming this short fall.

Additionally, the localization process may not be ideally suited using image segmentation, since if there is no
border readily visible, buildings will be grouped together impacting the pixel distribution patterns from one
sub-image to the next. Rescaling is also done on the image to bring it to a size of (128, 128, 3). Since each
segmentation may be significantly different in size, some pixel information of a building may be removed
while others are expanded, again disrupting pixel distribution. Using a object detection algorithm such as
YOLO may reduce this issue and provide better sub-image quality.

6 Conclusion/Future Work

Building damage assessment is critical for appropriately allocating limited resources post natural disasters when
time is of the essence for rescue efforts. Utilizing graph theory in conjunction with a powerful convolutional
neural network (CNN), a model was proposed that out-performed baseline values previously reported using a
baseline Resnet-50 architecture as well as a powerful classical machine learning algorithm called XGBoost.
The proposed model improved upon recall, precision and F1 scores in each of the different damage categories
by statistically significant margins.

Although there were significant improvements across the different categories, F1 scores remain relatively low
for major and minor damage categories assessment. More research should be done to enhance localization
of buildings by further exploring object detection as opposed to image segmentation models. This may also
reduce the amount of preprocessing of segmented objects within an image, providing a much cleaner object to
assess.

In addition, since it was demonstrated that graph structures provide useful information on building damage
assessment, future research will focus on different methods of defining edges between building images that
may prove to be useful in better assessing building damage for minor and major damage categories. Improving
upon building damage assessment across each category can undoubtedly assist in rescue efforts when natural
disasters occur.
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