MOTION-BASED HANDWRITING RECOGNITION
AND WORD RECONSTRUCTION

Junshen Kevin Chen
Stanford University
jkcl@stanford.edu

Wanze Xie
Stanford University
wanzexie@stanford.edu

Yutong He
Stanford University
kellyyhe@stanford.edu

ABSTRACT

In this project, we leverage a trained single-letter classifier to predict the written word from a contin-
uously written word sequence, by designing a word reconstruction pipeline consisting of a dynamic-
programming algorithm and an auto-correction model. We conduct experiments to optimize models in
this pipeline, then employ domain adaptation to explore using this pipeline on unseen data distributions.

1 Introduction

Handwriting recognition with vision-based approaches like
Optical Character Recognition (OCR) [1] and on-screen
stroke-detection has been successful in many applications
[2, 13 14, 15]. However, such applications or device often re-
quire touch screens or digitizers, which are often expensive
and pose an unnecessary restriction to users. Similar chal-
lenges are also identified in VR and AR environments [6 (7]
when user needs to recognize texts with motion sensors with-
out a sensing screen.

Previously [8l], we have developed a handwriting recog-
nition system based on a simple LSTM-based model [9]
with decent performance for per-character recognition based
solely on the sequential data of pen’s rotation during writ-
ing. In this project, we extend individual character prediction
to handwritten word reconstruction. We design a pipeline
with enhanced individual character classification, dynamic-
programming word candidate search, and auto-correction to
tackle this problem. Moreover, we also implemented do-
main adaptation to explore the generalizability of our model.
We find that our system work well with in-domain data,
producing high accuracy of 88.8% in reconstructed words.
Domain adaptation boosts per-character accuracy by 43.9%
compared to the regular fine-tuning method, albeit insuffi-
cient for word reconstruction with out-of-domain subjects
due to the limited quantity and diversity of our data.

Our code and dataset are available on Github: https://

github.com/deep-scribe/handwriting-recognition,

2 Related Work

Gesture Recognition Identifying gestures using the inertial
motion unit (IMU) data has been a long standing research
area in machine learning [[10, |11} [12}[13}[14], but few studies
make use of the IMU data to predict the handwriting let-
ter due to the lack of relevant dataset. Oh et al. analyzed
IMU data to recognize arabic numbers handwritten in the
3D space [15]. However, one major problem with the sys-
tem described in the study is that it requires user to wave
hand in the space to outline the trajectory of the number,
which contradicts with with people’s habit of writing with
pentip pointed down. Another work [16] performed a sim-
ilar study for recognizing handwriting digits based on pen
motion. Our work shares the same spirit, but we outstand by

extending the recognition to the entire English alphabet and
any English words.

Audio Speech Recognition We identify our work to be in-
trinsically similar to the Audio Speech Recognition (ASR)
task, instead of to image-based tasks like OCR. This is be-
cause our goal, especially for word reconstruction, is to con-
vert a variable data sequence into texts. Recent advance
[[L7,[18L19L120] in ASR has been focused on using end-to-end
approaches like connectionist temporal classification (CTC)
[[L7] or other sequence-to-seuqnce models like Transformer
[19L 20]. Our setting suffers from the fact we do not have
any existing large scale handwriting dataset for words, and
it is prohibitively expensive to collect a diverse handwrit-
ing word sequences of a large corpus from groups of people,
which makes it impossible for us to explore end-to-end mod-
els. This motivates us to design a word reconstruction system
based on our per-letter classification model trained with our
character dataset and then test on handwriting word data.

3 Dataset

Character Sequences We collect a dataset of hand-written
upper-case English letters between the three of us, with each
letter written 80 times to a total of 6420 sequences. A se-
quence is defined as a recording of frames of sensor val-
ues (rotation and acceleration) at a variable sampling rate of
writing one letter. We collect these sequences across dif-
ferent recording sessions to ensure variation in handwriting
positions within the individuals.

td yaw pitch roll ax ay az
7 90.10 -10.34 -20.02 2069 -374.1 10529
25 9027 -9.86 -20.29 193.0 -401.7 1046.2

Table 1: Frames from a sample of writing sequence

Calibration and Normalization To calibrate the sensor, be-
fore each recording session, the subject holds the stylus still
and record for over 10 seconds, then we use the mean of the
this calibration data z(¢%9) to calibrate all frames. Further,
we subtract frame O from all frames in any sequence to get
delta-rotation, invariant to stylus-holding positions.

1 % % 1 % cali i
calibrated(zV) = £ — (ﬁ 2(:);135)) - xé)
J:

https://github.com/deep-scribe/handwriting-recognition
https://github.com/deep-scribe/handwriting-recognition

Continuous Word Sequence In addition to the training set
of per-letter sequences, we record a set of selected 300 word
sequences from 3 subjects by letting each subject write 30
specific words 3 to 4 times to produce 100 word sequences
per subject. For the 30 specific words, 20 are selected from 2
English pangrams and 10 are selected from words with fre-
quent daily usage. We use this set to test the performance of
our word reconstruction system implemented based on our
per-letter classifier.

Per-Letter Sequence Augmentation To overcome the is-
sues of having a small training set, and the domain difference
between individually written letters (train set) and continu-
ously written words (test set), we apply data augmentation.

e Shape modification: for each letter sequence, we add a
Gaussian noise centered at 0 to each frame, rotate by a
small quaternion vector within 5 degrees, and stretch by a
random scalar € [1,1.3] to each dimension the sequence.
This generates training samples of slight variations.

e Prepend / append frames: for each letter sequence,
prepend a small portion of frames from the end of a ran-
dom sequence, append a small portion of frames from
the beginning of a random sequence, then interpolate to
smoothen the transition between them. This generates
samples similar to continuously written word, as the writ-
ing must move from the end of a letter to the beginning of
another letter.

e Trimming: for each letter sequence, randomly trim off
up to 10% of frames from its beginning and end. This
generates partially written samples to simulate word re-
construction algorithm does not always slicing the word
sequence perfectly.

We apply this data augmentation before each epoch, such
that the classifier never sees the exact same sequence twice,
to reduce overfitting.

Non-class Sequences We add a 27th labeled class to the
training data defined as "non-class", and ignore the sequence
when the classifier predicts this label. We generate these
samples by 1) taking random segments of noise from (44
2) randomly taking sub-sequence up to % of all frames of a
random letter sequence. These sequences are also applied
with the same data augmentation method.

Dataset for Auto-Correction Since our auto-correct model
is implemented based on SymSpell [21]], we utilize the stan-
dard corpus from SymSpell for auto-correction lookup. The
corpus itself is a frequency dictionary created by combining
the Google Books Ngram data and Spell Checker Oriented
Word Lists (SCOWL).

4 Method

On a high level, our pipeline splits the input word sequence
into equal parts, then enumerate all possible segments that
can make up the entire sequence. Then, we use a charac-
ter classifier to predict the letter for each segment, produc-
ing a rank of confidence (i.e. sorting the logits in descend-
ing order), to produce a list of candidates. We then run a
trajectory search algorithm to produce a list of likely tra-
jectories. Finally, use the trajectories with an autocorrect
model to produce a word prediction. We will define these
terminologies in the next sub-section. The following figure
demonstrates the pipeline.

word
sequence

. segment character
segmentation 5 q s
combinations classifier
hi
candxda}es T CEEY trajectories auto correct wo?d
(w/ logits) search string

Figure 1: Word reconstruction pipeline

4.1 Segmentation

Intuitively, any possibly section of the word sequence can
contain the writing of a letter, and thus we must first enumer-
ate all possible segments in the word sequence to account for
all possibilities.

e Segment: a segment is a non-empty part of a sequence
defined by a tuple of its starting and ending split-points.

e Candidate: a candidate is defined as a four-tuple
(seg-begin, seg-end, predicted-char, logit)

e Trajectory: a trajectory is a way to slice a sequence into
several candidates, each candidate corresponding to one
predicted character; a trajectory must span the entire se-
quence.

Raw sequence that are longer should be split into more parts
than shorter ones, to account for more letters possibly being
written. Define granularity G as number of splits on average
we give to one expected letter. From our dataset, we find that
the average number of frame per letter is 75:

Algorithm 1: Segmentation

Input : W, sequence of one written word
Input : G, granularity, num split per expected letter
Output: S, function maps segment bound to frames
QOutput: N, number of equal parts split
N + [len(W)/75] « G
n < [len(W)/N]
for begin < 0,1,2,..., N do
for end < begin, begin + 1, ..., N do
| S(begin,end) < Wbegin * n : end x n)
end
end
yield S, N

4.2 Character classifier

In our previous work [8]], we have experimented with differ-
ent methods ranging from traditional machine learning al-
gorithms such as K Nearest Neighbors[22], K Means[23]],
and deep learning frameworks such as vanilla CNN[24] and
LSTMI9]] with cross entropy loss. Among all the models we
have tried, LSTM achieves the best results.

In this project, we further improve the LSTM model to con-
struct an LSTM encoder-decoder setup as the character clas-
sifier. As demonstrated in the diagram below, a multi-layer
LSTM functions as an encoder to encode an input character
sequence of frames into an LSTM hidden state and cell state,
while discarding the output along the time axis. Since the
output of our model is a single time-step label of 26 letters
plus non-class, the decoder is a simple feed-forward struc-
ture of two fully connected layers, and the LSTM states are
concatenated and flattened as input to the decoder. The out-
put of the model is a vector of 27 logits.

Because the model calculation is highly parallelizable, to
improve efficiency, we interpolate and resample the raw se-
quence frames into a fixed length so that we may batch the
input to the model in training time and test time. The tech-
nique for resampling is base on our previous work [8], in
which we create a linear 1D interpolation model separately
for each yaw, pitch, roll sequence in a writing event, and
sample N points along the interpolated curve for the new
yaw, pitch, roll values. We use N = 100 for our experiment.

Y (n,n') « forward(resample(S(n,n’)))

Vn € {0,1,...N},vn’ € {n,n+1,..,N}

""""""""""" encoder | logits
mmm m -
5 layers | i | states

cell
states |!

flatten ||

i decoder '

Figure 2: Character classifier architecture (example model)

4.3 Trajectory Search

With a per-character model prediction for each segments, we
now design an algorithm that searches all combination of
segments. Previously, the model produces 26 possible can-
didates per segment (we discard the non-class in trajectory
search), and we rank and keep the top K trajectories by a
running average of the logits of all candidates that make up
the trajectory.

Intuitively, starting at any segment position n, the optimal
trajectory towards the end of the trajectory is the same re-
gardless on the trajectory arriving at n, and thus we leverage
dynamic programming (DP) to reduce runtime complexity.

Algorithm 2: TrajectorySearch

: Y, model predictions, a function maps
segment begin and end to logits
Input : N, number of equal splits in the sequence
Input : K, number of optimal trajectories to keep
Output: 7', a list of K optimal trajectories, sorted in
descending order of average logit
forn«+ N, N —1,...,2,1,0do

Input

forn < n-+1,n+2,.. N do
g« Y(n,n')
forc+0,1,2,...,25do

candidate < (n,n’, ¢, y.)
fort € T, do
t' < t U candidate

Yy 1
candidate’ €t
T, « T, U Yy, t)
end
end

candidate’ €t’ Ycandidate!

end
Tn < TopK(T,, K)

end
yield Tg

The following diagram demonstrates a contrived hypothet-
ical example of a sequence of writing "CAT" with N =

11, K = 2. Trajectory search produces several possible
trajectories ranked by their average logits. Observe that all
sub-trajectories ending at position 8 may connect with all K-
optimal sub-trajectories starting at position 8 (i.e. dynamic
programming).

CAT:27

A CART: 25
/. OAT:23

i /
2 o5 - N

11

COUT:23
COURT : 22
QOORT: 20

Figure 3: Trajectory search with dynamic programming

4.4 Auto-Correction

The last puzzle piece of our word reconstruction system
pipeline is to summarize the top K predictions from the tra-
jectory search and combine the corresponding information
from the auto-correction model to finalize the prediction for
the word. Our auto-correction model is based upon Sym-
Spell, which is proven [21] to be an effective non deep learn-
ing approach for correcting misspelled word.

Contrary to directly picking the Top 1 result from the Tra-
jectory Search and applying auto-correction, we believe that
by leveraging the confidence from all Top K words as well
as the information from auto-correction model, we are able
to obtain a more robust reconstruction result. We experiment
with four different kernel methods to find out the best way
to combine the information from the Trajectory Search and
auto-correction model.

For each prediction 7; from Top K results 7', and its con-
fidence c;, we can obtain auto-correction lookup result Ti,
the auto-correction edit distance d;, and word frequency f;
depending on the corpus. Note that different 7; can be the
same word with different c;, as shown in Figure E], SO are
the auto-correction outputs T;. Now we define four kernel
functions for the auto-correction model as:

e MaxVote: Count the number of occurrence for each same
word 75, and return the word 7; with the largest count.

e SumConf: Sum c¢; for each same word Tl and return T,
that has the largest confidence sum.

e Division Combination: For each auto-correction result

Ti, compute a; = ¢; - g’iffl, where 3 is an adjustable
weight to account for the magnitude difference between
fi and d;, and here we pick the emplrlcal value 5 = 100.
Then we sum «; for each same word T and return T that

has the largest a sum.

e Power Combination: For each auto-correction result 715,

8
compute «; = ¢;-log (f;) %7, where /3 is a parameter ad-
justing the significance of f; Wthh can simply be 1, here
we pick emplncal value 0.75. Then we sum «; for each

same word 7T} and return 7} that has the largest v sum.

In the experiment section we compare these four methods
against simply picking Ty as the final reconstructed word.
We show that leveraging the information of confidence, edit
distance and frequency can significantly improve the word
reconstruction accuracy.

4.5 Domain Adaptation for Character Classification

To compensate for the lack of generalized dataset, we de-
signed a way to adapt feature extractor trained from the lim-
ited dataset into any new user. We seek to prove and improve
the transferability and generalization ability of the model in
order to make the overall pipeline more applicable to the real
word, where we have limited training data, yet still would
like to utilize the models for a broad range of users.

We are inspired by the domain adaptation model introduced
in [25]] to tackle this problem. While the LSTM encoder re-
mains the same, we split the original decoder into two clas-
sifiers: the letter classifier and the domain classifier. The let-
ter classifier serves the original purpose of recognizing the
character written whereas the domain classifier determines
whether the input sequence comes from a new subject or a
seen subject. Denote sequences from the new subjects as
out-of-domain (OOD) data and ones from the seen subjects
as in-domain (ID) data. The feature extractor and the two
classifiers are trained in a adversarial setting: the domain
classifier to distinguish input data from the two domains,
while the feature extractor to confuse the domain classifier
while maintaining high character accuracy.

We use the original LSTM encoder and the second to the last
fully-connected layer in LSTM decoder as the feature ex-
tractor, and the last fully-connected layer in LSTM decoder
as the letter classifier. All pre-trained parameters are pre-
served at adversarial training. Then we build the domain
classifier, which is a two layer fully connected network with
ReLU as the intermediate activation function and sigmoid at
the end. The domain classifier takes the feature embeddings
extracted from the feature extractor as its input and outputs
a binary prediction of ID data (0’s) and OOD data (1’s).

The loss function for training this model is defined as

n 27

['chr (echr) = - Z Z yci) log(P(x(l) |Ca echr))

=0 c=1

Edom (odom) = - Z y((;) log(P(»T(Z) ‘Hdom»
1=0

+ (1 =y (1 = 108(Paom (¢ Baom)))
L(echra edom) = Echr (echr) - A])Edom (odom)

where L.p.-(0cp,) is the cross-entropy loss of the character
classification and Lgom (04om) is the binary cross-entropy

loss of the domain classification. Here yﬁl) and yc(li) are the

character label and the domain label of the ith example re-
spectively. A, is a hyperparameter that balances the trade-
off between the two objectives and p represents the number
of trained epoches. Here we use A\, = . —1to

T+exp(—10p)
schedule the trade-off.

Letter
class /1

)

Sigmoid
A

: Fc1 M
et |
cell s C 100 |

states i f
> flatten |!

| Letter |
i classifier |

Softmax
A

hidden ||
states ||

LSTM Encoder

Domain 3
Classifier |

Figure 4: Domain Adaptation Architecture

S Experiments and Evaluation
5.1 Character classifier hyperparameter optimization

The following hyperparameters are to be tuned for an op-
timal encoder-decoder architecture, we conduct random
search on them within their respective integer range:

e Number of LSTM layers: [1, §]
e LSTM hidden state dimension: [50, 300]
e Feed-forward hidden layer units: [50, 400]

While fixing other training parameters, such that for all mod-
els, we train with AdamW optimizer [26] with A = 0.005.
We then rank the models by accuracy on the dev set of char-
acter sequences:

o
o %% %
> et oY
.

‘.o.“. -
.bes:ms&el (275,%; 88
.

300
250 5
6° o

’Sfmj?jdsni?m 100 o 87w i
Figure 5: Dev accuracy with different hyperparameter
choices. Darker color represents higher accuracy.

The best character classifier we find has 8 LSTM layers of
275-dimensional state, 88 feed-forward hidden units, achiev-
ing 0.9880 dev accuracy, and 0.9931 train accuracy.

5.2 Word reconstruction hyperparameter optimization

Granularity, GG, is how many splits on average we give to one
expected letter in the word sequence, at the average of 75
frames per letter. We conduct a linear search of G € [3,9].
K is the number of optimal "beams" we keep during trajec-
tory search, and the number of trajectory for the auto-correct
model. We conduct a search of K € {5,10,15,20}. We
evaluate these hyperparameters with accuracy (proportion of
correct predicted word) and mean edit distance (how many
letter change needed from prediction to label word).

Test Accuracy and Edit Distance

G

Figure 6: Metrics of hyperparameter search for K and G

We find that a pipeline with K = 20, G = 4 produces the
best performance of 0.8771 accuracy and 0.3296 mean edit
distance on our test set of word sequences.

5.3 Auto-Correction Kernel Experiment

In order to find the best kernel methods for the auto-
correction model, we conduct experiment of running the

word reconstruction pipeline on the continuous word se-
quences testset. We use the best found model in 5.2 and
choose to either directly return 7j (auto-corrected Top 1 pre-
diction) or apply the 4 different kernel methods in the auto-
correction model, creating a total of 5 experiment settings.
Since our per-letter classifier is trained on the character se-
quences from two of the three subjects in the testset, we note
the test data from these two subjects as in-domain data (Id-1
and Id-2), and the test data from the other subject as out-of-
domain data (OOD). Results are shown in Table 2}

Topl MaxVote SumConf D.C. PC.
OoO0D 0.229 0.208 0.229 0.292 0.260
Id-1 0.674 0.640 0.685 0.832 0.787
Id-2 0.678 0.711 0.733 0.944 0.900
Id-avg 0.676 0.676 0.710 0.888 0.844

Table 2: Frames from a sample of writing sequence

It is observed that the kernel method Divide Combination
(D.C.) performs the best across all test subjects, having 31%
improvement above the baseline with no kernel methods. We
also note that while the word reconstruction system performs
well on in-domain testset, it does not work for OOD subject,
due to the undesirable performance of the per-letter classifier
on OOD subjects, heralding the need for domain adaptation.

5.4 Out-of-domain character classification

To examine the effectiveness of our domain adaptation
method, we split our dataset into two subsets: one ID set
with two subjects’ handwriting and one OOD set with one
held-out subject’s data. We experiment three variations of a
character classifier with 3 LSTM layers of 200-dimensional
state and 200 feed-forward hidden units: (1) original model
trained on only the ID set; (2) original model pretrained on
the ID set and then fine-tuned on the OOD set; (3) domain
adaptation model pretrained on the ID set and further trained
on a subset of the ID set and the entire OOD set.

The OOD dataset consists of 405 sequences and we sample
441 in-domain sequences for training the domain adaptation
model. We split the datasets into training, development and
testing sets with ratio 9:1:1 and train all models with AdamW
optimizer with A = 0.05 and maximum epoches 500.

As shown in Table [3] domain adaptation method achieves
the best results in training, development and testing accuracy
and improves the other two methods with great margins.

Train Acc Dev Acc Test Acc
Original \ \ 0.13725
Fine-Tuning 0.96323 0.49057 0.49020
Domain Adaptation 0.99185 0.64780 0.70588

Table 3: Results of transfer learning and domain adaptation

6 Analysis and Discussion

Character Classifier From the hyper parameter search, we
are able to make the preliminary conclusion that, an LSTM
encoder that is deeper and higher in hidden state dimension
generally performs better, while a feed-forward decoder with
fewer hidden units performs better. This is likely due to
the fact that the LSTM layers is required to encode a large
amount of information to produce a distinctive representa-
tion across all classes, whereas for the feed-forward decoder

should have fewer parameters so that it does not overfit and
achieve better accuracy on unseen data.

Word Reconstruction Hyperparameters We observe that
increasing K generally increases performance, and increas-
ing G increases then decreases performance within its range.
A higher K results in better accuracy because a large K pro-
duces a bigger number of "likely correct" word trajectories
("beams") for the auto-correct model. Whereas G should be
tuned to a suitable value, as when it is too low, segmentation
is too coarse to produce accurate slice to the word sequence
between letters, and when G is too high, new noise is intro-
duced leading to false predictions.

Auto-Correction Kernels The essential purpose of the study
for Auto-Correction is to explore how we can best adapt the
SymSpell algorithm in our setting, in which we have a group
of candidate predictions available from Trajectory Search in-
stead of just one. As shown in the experiment, if using the
function defined for D.C. kernel to combine ¢; from Tra-
jectory Search and f;, d; from auto-correct lookup, we can
achieve a reasonable accuracy of 88.8% which enables us
to deploy our word reconstruction pipeline to the real-time
demo application for in-domain subjects. This demonstrates
that the auto-correction module with kernel methods is an
indispensable piece in the reconstruction pipeline.

Transfer Learning and Domain Adaptation As expected,
the original model suffers heavily from overfitting as it only
achieves 13.725% on the OOD dataset. Fine-tuning the
model on the OOD set improves the accuracy to 49.02%,
which indicates that the model has the capability of learn-
ing and extracting the feature. However, since the size of
the OOD dataset is designed to be small to simulate the real
world application, fine-tuning is not sufficient for the model
to achieve decent accuracy. With domain adaptation, the
model is able to achieve 70.588% accuracy, significantly im-
proving both models. This shows that the domain adaptation
model is more data-efficient and more suitable for the real
world setting. However, the current result is still insufficient
for trajectory search, which requires high confidence and ac-
curacy. With an improved base model, we expect domain
adaptation to help deploy the pipeline to the real word.

7 Conclusion and Future Work

In this project, we design a word reconstruction system that
consists of a LSTM-based individual character classifier,
dynamic-programming word search, and an auto-correction
model. We find that the character classifier with a com-
plex LSTM encoder and simple FC decoder works better,
and trajectory search with a higher number of beams pro-
duces higher accuracy. Auto-correction with Divide Combi-
nation strategy performs the best with 88.8% average word
reconstruction accuracy. The domain adaptation mechanism
is able to transfer the knowledge and feature extractor the
model learned from the limited dataset into any new user
of the device, with improvement to the base model from
13.725% to 70.588%.

In the future, we plan to parallelize trajectory search to
speed up computation. We also plan to collect more data
and further fine-tune the base character classification model
to achieve better performance. With a base model trained
with better data, we expect domain adaptation to be a data-
efficient way to apply our system to the real world.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Sargur N. Srihari, Ajay Shekhawat, and Stephen W.
Lam. Optical character recognition (ocr). In Ency-
clopedia of Computer Science, pages 1326—1333. John
Wiley and Sons Ltd., Chichester, UK.

Felipe Petroski Such, Dheeraj Peri, Frank Brockler,
Paul Hutkowski, and Raymond Ptucha. Fully convo-
lutional networks for handwriting recognition. arXiv
preprint arXiv:1907.04888, 2019.

Junho Jo, Hyung Il Koo, Jac Woong Soh, and Nam Ik
Cho. Handwritten text segmentation via end-to-
end learning of convolutional neural network. arXiv
preprint arXiv:1906.05229, 2019.

Jacob O. Wobbrock, Brad A. Myers, and John A. Kem-
bel. Edgewrite: A stylus-based text entry method de-
signed for high accuracy and stability of motion. In
Proceedings of the 16th Annual ACM Symposium on
User Interface Software and Technology, UIST ’03,
pages 61-70, New York, NY, USA, 2003. ACM.

R. Reeve Ingle, Yasuhisa Fujii, Thomas Deselaers,
Jonathan Baccash, and Ashok C. Popat. A scal-
able handwritten text recognition system. CoRR,
abs/1904.09150, 2019.

I. Poupyrev, N. Tomokazu, and S. Weghorst. Virtual
notepad: Handwriting in immersive vr. In Proceedings
of the Virtual Reality Annual International Symposium,
VRAIS 98, pages 126—, Washington, DC, USA, 1998.
IEEE Computer Society.

Christoph Amma, Marcus Georgi, and Tanja Schultz.
Airwriting: Hands-free mobile text input by spotting
and continuous recognition of 3d-space handwriting
with inertial sensors. In 2012 16th International Sym-
posium on Wearable Computers, pages 52-59. IEEE,
2012.

Junshen Kevin Chen, Wanze Xie, and Yutong Kelly
He. Motion-based handwriting recognition. Reports.
CS229: Machine Learning Autumn 2019 Best Poster
Award Projects, page 1, 2019.

Sepp Hochreiter and Jirgen Schmidhuber. Long
short-term memory. Neural Comput., 9(8):1735-1780,
November 1997.

Minwoo Kim, Jaechan Cho, Seongjoo Lee, and Yunho
Jung. Imu sensor-based hand gesture recognition for
human-machine interfaces. Sensors, 19(18):3827, Sep
2019.

Biswarup Ganguly and Amit Konar. Kinect sensor
based gesture recognition for surveillance application,
2018.

F. Griitzmacher, J. Wolff, and C. Haubelt. Sensor-based
online hand gesture recognition on multi-core dsps. In
2015 IEEE Global Conference on Signal and Infor-
mation Processing (GlobalSIP), pages 898-902, Dec
2015.

Z. Ren, J. Yuan, J. Meng, and Z. Zhang. Robust part-
based hand gesture recognition using kinect sensor.
IEEE Transactions on Multimedia, 15(5):1110-1120,
Aug 2013.

L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu.
Sensor-based activity recognition. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), 42(6):790-808, Nov 2012.

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

J. K. Oh, Sung-Jung Cho, Won-Chul Bang, Wook
Chang, Eunseok Choi, Jing Yang, Joonkee Cho, and
Dong Yoon Kim. Inertial sensor based recognition of
3-d character gestures with an ensemble classifiers. In
Ninth International Workshop on Frontiers in Hand-
writing Recognition, pages 112-117, Oct 2004.

Maximilian Schrapel, Max-Ludwig Stadler, and
Michael Rohs. Pentelligence: Combining pen tip mo-
tion and writing sounds for handwritten digit recogni-
tion. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI 18, pages
131:1-131:11, New York, NY, USA, 2018. ACM.

Takenori Yoshimura, Tomoki Hayashi, Kazuya Takeda,
and Shinji Watanabe. End-to-end automatic speech
recognition integrated with ctc-based voice activity de-
tection. arXiv preprint arXiv:2002.00551, 2020.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Ro-
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, An-
juli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina
Gonina, et al. State-of-the-art speech recognition with
sequence-to-sequence models. In 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4774—4778. 1IEEE, 2018.

Niko Moritz, Takaaki Hori, and Jonathan Le Roux.
Streaming automatic speech recognition with the trans-
former model. arXiv preprint arXiv:2001.02674, 2020.

Xuankai Chang, Wangyou Zhang, Yanmin Qian,
Jonathan Le Roux, and Shinji Watanabe. End-to-
end multi-speaker speech recognition with transformer.
arXiv preprint arXiv:2002.03921, 2020.

Avishek Bose, Vahid Behzadan, Carlos Aguirre, and
William H. Hsu. A novel approach for detection and
ranking of trendy and emerging cyber threat events in
twitter streams. In Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Net-
works Analysis and Mining, ASONAM ’19, page
871-878, New York, NY, USA, 2019. Association for
Computing Machinery.

T. Cover and P. Hart. Nearest neighbor pattern classifi-
cation. IEEE Trans. Inf. Theor., 13(1):21-27, Septem-
ber 2006.

J. A. Hartigan and M. A. Wong. A k-means clustering
algorithm. JSTOR: Applied Statistics, 28(1):100-108,
1979.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278-2324, Nov
1998.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, Frangois Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-
adversarial training of neural networks. J. Mach.
Learn. Res., 17(1):2096-2030, January 2016.
Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

	Introduction
	Related Work
	Dataset
	Method
	Segmentation
	Character classifier
	Trajectory Search
	Auto-Correction
	Domain Adaptation for Character Classification

	Experiments and Evaluation
	Character classifier hyperparameter optimization
	Word reconstruction hyperparameter optimization
	Auto-Correction Kernel Experiment
	Out-of-domain character classification

	Analysis and Discussion
	Conclusion and Future Work

