
Predicting protein functional sites through deep graph
convolutional neural networks on atomic point-clouds

David Toomer
Stanford University

djtoomer@stanford.edu

Abstract

One of the most important processes in de novo drug design is to determine functional sites on the
protein of interest. Recent research in computer-aided drug design (CADD) has developed several
algorithms that have made headway in automating this process to be completely structure-based, i.e.
without any information about the physical or chemical properties of the binding ligand. The salient
way these algorithms represent proteins is through discrete voxelization, but this data structure is
sparse and requires significant preprocessing. This paper proposes a novel protein functional site
predictor that avoids this expensive representation and instead leverages point-clouds as protein
embeddings. Each protein is treated as a graph where physicochemical properties are signals on
the graph. The network is a state-of-the-art graph convolutional neural network (GCNN), which
has been shown to be effective when analyzing spatial information. The proposed network reaches
high accuracy and precision, showing competitive results with previous methods, and it provides key
insights into the structure of functional sites on enzymes.

1 Motivation

Computer-aided drug design (CADD) has become one of
the most important components in targeting disease. One
of the fundamental goals of CADD is to predict if, where,
and how a candidate drug molecule will bind to a target
protein. This project aims to approach the problem in
reverse: to find suitable binding sites on proteins without
prior knowledge of the ligand’s molecular conformation
in order to allow for more flexibility in designing novel
therapeutics and to support de novo drug discovery.

While many researchers have proposed computational
methods for structure-based drug-discovery, many of
these methods are either computationally expensive, or
the underlying data structure is not optimal. This project
aims to approach the challenge of de novo drug discov-
ery from an embedding standpoint, trying to find a more
natural representation for 3D molecular structure.

2 Data and Methods

2.1 Dataset

The sc-PDB protein database was used for training
and testing, which is an annotated set of druggable
binding sites available at http://bioinfo-pharma.
u-strasbg.fr/scPDB/ [1]. The database contains
nearly 5,000 proteins and their attachments to almost

7,000 different ligands. Each protein-ligand complex
contains information about every atom in the interac-
tion and its location in 3D-space, as well as chemi-
cal features such as charge, hydrogen bonding capacity,
and its associated amino acid residue. A detailed de-
scription of the .mol2 file format and what it contains
can be found at https://reference.wolfram.com/
language/ref/format/MOL2.html [2].

With a total of 16,034 protein-ligand interaction entries,
the dataset was split into 12,000 entries for training and
the remaining 4,034 for development/testing. However,
since each protein is divided into subregions before being
fed into the network, the dataset is effectively augmented
to over nine million trainable examples.

(a) (b)

Figure 1: Example of a protein contained in the sc-PDB
dataset (PDB ID: iodw). (a) The protein structure. (b)
The mesh surface plot of the binding site cavity.

1

http://bioinfo-pharma.u-strasbg.fr/scPDB/
http://bioinfo-pharma.u-strasbg.fr/scPDB/
https://reference.wolfram.com/language/ref/format/MOL2.html
https://reference.wolfram.com/language/ref/format/MOL2.html

2.2 Data Representation

Several researchers have offered compelling methods for
representing proteins molecules for various applications.

Amino acid encoding. One of the most popular ways
of representing proteins is based off of its amino acid
chain. The protein is represented as a chain of residues,
each having physicochemical properties, such as charge,
acidity/basicity, size, and hydrophobicity. While this has
been shown to be useful in applications to determine the
secondary/tertiary structure of a protein [3, 4], it neglects
the positioning of the individual atoms in a residue, which
is crucial for understanding how a ligand will interact
with a functional site. The problem of drug discovery
requires atom-scale resolution.

Voxelization. The current state-of-the-art protein repre-
sentation for functional site prediction without explicit
molecular simulation is voxelization. Jiang et al. and Alt-
man both use a discrete atomic voxelization approach, per-
forming calculations on both empty and protein-occupied
voxels to determine subregions that are likely to be bind-
ing pockets [5, 6]. While this has been shown to be effec-
tive, it requires large amounts of pre-processing, and the
data structure is very sparse. A better format for the data
would capture spatial and chemical features in a more
succinct way.

I propose a shift from the voxelization approach to a
point-cloud representation of the protein. The point-cloud
intrinsically contains spatial features of the atoms, and
additional atomic properties (such as charge and polarity)
can be included as features of each node. The point-cloud
can be interpreted as a graph, where each feature is a
signal on the graph. These features would then be fed into
a deep graph convolutional neural network (GCNN) that
predicts the likelihood that a ligand could bind there.

(a) (b)

Figure 2: (a) A 3D protein structure. (b) The 3D point-
cloud representation of the atoms in the protein. [7].

The promise of using point-clouds for proteins is not
novel, as Benhabiles et al. have exploited in their transfer-
learning approach to protein representation for a different
application [8]. However, in their model, they still de-
fault to voxelizing the point-cloud before feeding it into
a network, whereas this model will learn using the raw
point-cloud data.

2.3 Atomic Feature Extraction

Each atom will hold several features corresponding to its
own chemical properties and the properties of its surround-
ings, such as its charge, nearby Van der Waals interactions,
and electrostatic attraction/repulsion. A summary of the
chosen features for the network are given below.

Feature Formula (if relevant)

(x, y, z)-coords

charge

hydrogen bonding

occupancy 1− exp(−(rvdw/r)12)
Van der Waals

∑
j∈Nk(i)

Aij

r12ij
− Bij

r6ij

electrostatic potential ke ·
∑

j∈Nk(i)

qiqj
rij

Table 1: The physicochemical features used for each
atom.

3 Network Architecture

The basis of DeepPCSite is a graph convolutional neural
network, which leverages the principle ideas behind signal
processing and applies them to graph structures. A mod-
ified version of the PointGCN architecture with global
pooling was used for the classification task [9, 10, 11, 12].

A protein is treated as a general, undirected, k-nearest
neighbors graph G = (V, E ,X), where V is the set of
N = |V| vertices, E is the set of edges, and X ∈ RN×d
is the feature matrix, where d is the number of features
per node. The features of each atom are its (x, y, z)-
coordinates and its chemoinformatic properties, shown in
Table 1. Given the coordinates of the atoms in the protein,
the k-nearest neighbor graph is weighted with a Gaussian
kernel,

Wi,j =

{
exp(−||xi − xj ||2/σ2 if j ∈ Nk(i)
0 otherwise

(1)

where Nk(i) is the set of k-nearest neighbors of vertex i.
The choice to use k-nearest neighbors for edge weighting
instead of the bond affinities of the covalent and weak
bonding interactions is to deliberately extract the spatial
relationships between proximal non-bonded atoms.

The spectral properties of the graph, which are crucial to
convolution, are computed through the graph Laplacian,
which is the difference operator L = D −W , where D
is the degree matrix of the graph. For propagation, the
normalized version of the Laplacian L is used:

L = D−
1
2LD−

1
2 = IN −D−

1
2WD−

1
2 (2)

2

Figure 3: The PointGCN global pooling architecture, adapted to the protein site classification task. Layers in light
blue are graph convolutional layers, layers in light red are pooling layers (global, 1-max, and variance), and layers in
grey are either fully connected or otherwise noted. The dimensions feeding out of one layer and into another are given
between the two layers.

3.1 Convolution

The convolution and pooling layers in GCNN follow a
similar metaphor to traditional convolutional neural net-
works. For convolution, linear shift-invariant filters in the
vertex domain transform a graph signal x to another graph
signal y via

y = gα(L)x =

K∑
k=0

θkTk(L)x (3)

where θk is learned from data, and Equation 3 is the
Chebyshev polynomial, which can be computed recur-
sively as T0(L) = IN , T1(L) = L, and for k ≥ 2,

Tk(L) = 2LTk−1(L)− Tk−2(L). (4)

Each convolution layer uses these polynomials with order
k = 3 for graph convolution, followed by ReLU activa-
tion.

3.2 Hyperparameters

Many of the network’s hyperparameters aligned well with
the original PointGCN global pooling architecture. De-
tails on the hyperparameters are explored below.

Graph properties. Each protein point-cloud was divided
into subregions before being fed into the network. Given
the interaction data contained in sc-PDB, the average
binding site radius was calculated to be between 10-15Å.
Likewise, each subregion comprises a 20Å×20Å×20Å
cubic volume, which aligns well with previous research
[6, 9].

For each of these potential functional sites, it was deter-
mined that an insignificant number of binding sites had
less than 300 atoms, but a significant number of them had

more than 300 atoms, so this was considered the threshold
for a valid functional site candidate. Using a threshold
eliminates the need to train on a myriad of sparse regions
on the protein that are likely not functional sites. Each
atom in the graph was weighed with its k = 30 nearest
neighbors.

Network hyperparameters. The hyperparameters for
the network were mostly taken from the PointGCN net-
work or from common practice. The network was trained
using an Adam optimizer (β1 = 0.9, β2 = 0.999) us-
ing mini-batch gradient descent (mini-batch size = 28).
Adjustment of the mini-batch size (28, 32, 64) led to no
significant differences in training.

3.3 Regularization

Because functional sites can comprise anywhere from 10-
20% of an enzyme, there were more negative examples
than positive examples in the training set. This unbal-
anced data led to overfitting on the training set, and lower
performance on positive examples (low recall). In order
to offset this, inverted dropout was added after each con-
volution layer and each dense layer, and `2-regularization
was added to the network. Additionally, the sigmoid
cross-entropy terms in the loss function were weighted to
account for the relative difference:

L = −
∑
i

α · yi log(ŷi) + β · (1− yi) log(1− ŷi) (5)

where α > β to add more weight to the positive examples.

4 Results

The protein functional site predictor was evaluated on two
scales: (1) a site-level scale, to characterize accuracy in

3

predicting whether a subregion is a functional site, and
(2) a protein-level scale, to determine if the predictor can
choose the most probable region on a protein to be the
functional site.

4.1 Subregion Classification

The first task, to classify subregions as functional sites or
not, is used to determine which examples the network is
classifying as positive or negative before evaluating it on
a whole protein. The confusion matrix for the network is
shown below:

n = 2,278,142 Predicted: True Predicted: False

Actual: True 340,887 23,616

Actual: False 10,627 1,903,012

Table 2: Confusion matrix for the protein functional site
classifier.

From the confusion matrix, the accuracy is 0.985, the
precision is 0.970, and the recall is 0.935. This level of
accuracy and precision is highly competitive with other
protein site classifiers, such as fPocket and DeepSite, yet
this is largely in part to the overwhelming number of
negative examples when performing subregion classifi-
cation. The recall is a more important measurement, as
false negatives show the inactive regions on a protein that
the classifier thinks are functional sites.

Hydrophilic surface cavities return false negatives.
Analyzing many of the false negatives reveals that cavities
containing polar and charged residues on the surface of a
protein are frequently classified as functional sites. This
is consistent with biochemistry because hydrophilic and
charged residues are most common for hydrogen bonding,
which is crucial for a ligand to bind. As shown in Fig-
ure 4, the falsely predicted region is similar in chemical
and physical composure to an actual functional site. This
result suggests that the network is learning the correct
physicochemical properties of functional sites.

(a) (b)

Figure 4: An example of a misclassified subregion (high-
lighted in red), with the active site as a reference (high-
lighted in coral) on protein kinase 1e7v. Hydrophilic
residues are shown in teal. (a) Cartoon depiction of the
misclassification. (b) Surface contour plot of (a).

4.2 Functional Site Prediction

Knowing that the network identifies the proper functional
regions, a larger-scope task can be performed. The more
important use of the site predictor is to be able to deter-
mine the most likely functional site(s) on a given enzyme.
For this task, a successful example is defined as when the
center of the predicted functional site is within 10Å of the
center of the actual binding site. The network achieved
a 96.75% accuracy in this task, with an average error of
12.7Å from the binding site.

Errors in functional site prediction reveal putative al-
losteric inhibitory regions.Analysis of the predictor’s
mistakes shows that the error described in Section 4.1
was often between 0-10Å or much larger than that, with
few in-betweens. This is to be expected, and it suggests
that the network was finding the centers of similar sites on
the protein rather than the outskirts of the true functional
site. Many of these distal regions contained regulatory
elements, such as allosteric inhibition sites, or cofactor
binding sites.

(a) (b)

(c) (d)

Figure 5: Example of an incorrect prediction made by
the network. The actual site is shown in coral, and the
predicted site is shown in red. Hydrophilic residues are
colored in teal. (a) Cartoon depiction of protein 3akk, its
binding site, and the predicted site. (b) Close-up view of
(a). (c) Surface contour plot of (a). (d) Surface contour
plot of (b).

As shown in Figure 5, the region that was predicted is a
region containing a Mg2+ ion cofactor, which is appropri-
ately shrouded in a hydrophilic cavity. The actual active
site has a similar chemical composure, including another
Mg2+ ion.

Regions such as this display a greater trend of the net-
work—incorrectly predicted regions may be susceptible
to functionality as allosteric sites. These could be used
in de novo drug design as regions for non-competitive in-
hibitors to bind. Further research into these sites, such as

4

molecular dynamics simulation, could characterize their
ability to be used as functional sites for novel ligands.

5 Conclusion

Using point-clouds as protein embeddings has shown to
be effective for the task of protein functional site predic-
tion. The protein site classifier performs similarly well to
other classifiers, maintaining a high accuracy and preci-
sion.

Future research would focus on improving recall. These
efforts would aim to prevent the network from misclassi-
fying non-functional hydrophilic regions, such as incor-

porating more spatial features. Research into the latent
space of the GCNN could also reveal more information
about what the network considers the most important,
which would help further reduce the size of the input by
lessening the number of chemical features on the graph.
Additionally, because the kNN graph structure is rotation-
and shift-invariant, researching methods of data augmen-
tation in order to equilibrate positive and negative data
would be useful to improve recall.

6 Contributions

All portions of the project were contributed by the author.

References

[1] J. Desaphy, G. Bret, D. Rognan, and E. Kellenberger. sc-pdb: a 3d-database of ligandable binding sites—10 years
on. Oxford Academic, 2014.

[2] Wolfram Language and System Documentation Center. Mol2.
[3] K. Yang, Z. Wu, and F. Arnold. Machine-learning-guided directed evolution for protein engineering. Nature

Methods, 16:687–694, 2019.
[4] F. Noé, G. De Fabritis, and C. Clementi. Machine learning for protein folding and dynamics. Elsevier, Current

Opinion in Structural Biology, 60:77–84, 2020.
[5] M. Jiang, Z. Li, Y. Bian, and Z. Wei. A novel protein descriptor for the prediction of drug binding sites. BMC

Bioinformatics, 20(478):1–13, 2019.
[6] W. Torng and R. Altman. High precision protein functional site detection using 3d convolutional neural networks.

International Society for Computational Biology, 35(9):1503–1512, 2019.
[7] R. Townshend, R. Bedi, P. Suriana, and R. Dror. End-to-end learning on protein structure for interface prediction.

arXiv, pages 1–8, 2019.
[8] H. Benhabiles, K. Hammoudi, F. Windal, M. Melkemi, and A. Cabani. A transfer learning exploited for indexing

protein structures from 3d point clouds. Processing and Analysis of Biomedical Information, 11379, 2019.
[9] Y. Zhang and M. Rabbat. A graph-cnn for 3d point cloud classification. International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), 2018.
[10] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[12] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020.

5

	Motivation
	Data and Methods
	Dataset
	Data Representation
	Atomic Feature Extraction

	Network Architecture
	Convolution
	Hyperparameters
	Regularization

	Results
	Subregion Classification
	Functional Site Prediction

	Conclusion
	Contributions

