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Abstract 

Deep Fakes are a threat to trust in information and digital media, this paper seeks to analyze numerous 

binary classification tasks indicating if a video is or is not a deep fake.  This is a uniquely challenging problem 

as deep fakes have become very difficult for humans to classify.  Xception model is used with several data 

processing techniques such as error level analysis and methods of removing trivial image regions.  A novel 

conditional loss function is proposed.  The end results are further explored with occlusion sensitivity to 

interpret what is being done by the network.  Despite the model complexity, learning was not found to take 

place.  Deep Fakes have a very low Bayes Error, and the class imbalance leads to the model over predicting 

images as “Fake.” Numerous methods for future work are proposed to resolve this challenge. 

 

1 Introduction 

Deep Fakes are fake digital images, audio and video 

created using deep neural networks.  This technology 

can generate hyper realistic digital media that is 

rarely distinguishable to humans.  The open source 

nature of deep fakes has democratized this powerful 

technology and can be harnessed as fake news, harm 

trust in digital media and one day may be an 

existential threat to society.  Being able to detect 

forged digital media is a top priority for deep learning 

engineers, and this is the goal under investigation.  

The outcome will be an analysis of the state-of-the-

art image classification methods, and novel strategies 

for deep fake detection. 

2 Related Work 

Rapid Object Detection using a Boosted Cascade 

of Simple Features[12] – Fast machine learning 

based method to detect objects in images, notably 

images with a high detection rate. 

Realistic Image Synthesis and Classification[13] – 

Similar work to compare real images and computer-

generated images, this work is limited by the fact the 

data set was comparing easily distinguished 

computer-generated images which came from video 

games, it also highlighted Error Level Analysis as a 

basis for detecting forged images 

 

FaceForensics++: Learning to Detect Manipulated 

Facial Images[2, 3] – Makes benchmarks for 

numerous machine learning models.  This shows that 

the Xception model is the highest performing 

algorithm on Deep Fakes 

3 Dataset Description 

The dataset used for this project is the deep fake data 

provided by AWS, Facebook, Microsoft, the 

Partnership on AI’s Media Integrity Steering 

Committee for their Deep Fake Detection Challenge 

(DFDC) hosted on Kaggle. 

The dataset is comprised of approximately 75,000 

mp4 file format videos of 10 seconds with a label of 

‘REAL’ or ‘FAKE.’ The dataset is very large and not 

hosted on Kaggle, it needs to be downloaded as 50 

separate zip files of 9-10 Gb for a total of 470 Gb.  

The videos are not a consistent shape, although most 

are 1080 x 1920.  Due to the size of the data set, 

storage and memory issues were non trivial. 

The data is unstructured and requires significant 

processing prior to any deep learning. 
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Figure 1: Side by side of real and fake image 

4 Challenges 

 

Figure 2: Real and fake images 

Bayes Optimal Error 

This is a significantly challenging task as human 

level performance is low at detecting deep fakes.  

From figure 4, can you recognize which image is 

fake?  If you saw this image outside of a deep fake 

paper, would you ever be suspicious it isn’t real?  

These factors lead to the assumption that Bayes 

Optimal Error is very high effectively capping the 

potential accuracy of a learning algorithm, and 

making learning effective parameters especially 

challenging.  From a small trial, roughly 1 of 5 can be 

identified by a human. 

For technical implementation challenges, see 

Appendix A. 

5 Methods 

5.1 Baseline Model Architecture – Xception 

Transfer Learning 

Xception is the baseline model for the 

experiments[7], it stands for extreme inception based 

on the well-known Inception model pretrained on the 

ImageNet database.  Transfer learning was used with 

three fully connected layers added to the end of the 

model. 

 

Figure 3 Xception Model 

Architecture [7] and Figure 4: 

Layers added to Xception Model 

for transfer learning baseline 

The loss function is binary 

cross entropy, this is both a 

sensible choice as it is a 

binary classification task, but 

it is also dictated by the 

competition as the loss 

function to be used. 

From the perspective of the 

DFDC the only metric is loss.  From an intuitive 

perspective however, recall is likely the most 

important metric given a minimum level of precision.  

To align this project’s work with the competition, 

loss will be the primary evaluation metric to 

determine the optimal model despite it not being the 

optimal real-world evaluation metric.  Recall and 

precision will also be analyzed, but not from the 

perspective of selecting the best method.  Solely for 

the method in which the loss function is adapted, 



validation accuracy will be considered as the 

evaluation metric. 

In the baseline, this model will be used with the 

normal images resized to fit more images into 

memory with a width and height of 200 pixels. 

5.2 Model using Error Level Analysis 

In the second experiment, the same baseline model 

will be used, but it will be fed in images that are 

made using Error Level Analysis [9].  Error Level 

Analysis is a process of resaving images and 

comparing their differences.  This is a common 

method of detecting digital forgeries as a forged 

region of an image may have been saved differently 

than the original image. 

 
Figure 5: Showing Image and Image in Error Level Analysis 

 5.3 Model using Non-Facial Feature Cropping 

The third experiment will utilize images in which 

only the detected face from Haar Cascading [12] is 

shown and all other contents cropped out.  The non-

face cropping method proposed in this paper is a 

novel method. It is included as an experiment not 

because faces are more likely to reveal fake image 

data, but the most threatening deep fakes are 

manipulating human faces and a model focusing on 

those deep fakes will be more impactful than models 

detecting deep fakes from non-facial features.  

 
Figure 6: Showing Image and Image with removal of contents 

not detected as a face 

 

5.4 A Novel Conditional Loss Function 

 
Figure 7: The first image showing a function that represents an 

“if” statement by which if x-1 = 0, the function is triggered.  

The second image shows an equation representing an “if not” 

function. 

A method of creating a conditional loss function is 

proposed.  This was done because the imbalanced 

dataset led the model to repeatedly always predict the 

image is fake rather than learning key features.  A 

method is proposed to adapt the loss function if all 

predictions are “FAKE.” Although there are other 

potentially methods, the loss function was chosen so 

it will be differentiable, represent an if statement, and 

punish the model with large weight updates if the 

model always predicts “FAKE.”  To do this, I use the 

tanh² function added to traditional binary cross 

entropy as shown below. 
Loss = Loss Binary Cross Entropy + Loss Conditional 

Loss Conditional = -[1 - tanh2 ( I(y pred, y true)*τ )] * Φ 
• I(y pred, y true), Iota – The condition to be triggered 

when Iota equals zero 

• Φ, phi – punishment factor 

• τ, tau – tightness factor 

Equation 1 for the conditional loss function I is a function of 

the predicted and true y values where if I is zero the condition 

will be met, τ is a non-trainable hyper parameter that tightens 

the “if” band, typically a larger value will be desired to tighten 

when the if statement is met, and Φ is the punishment factor 

that determines how strong the weights will update similar to a 

learning rate and is also a non-trainable hyper parameter. 

For Equation 1, in this experiment Iota is set to being 

the difference between the sum of the predictions 

minus the length of the values, this means that if the 

length of the test values equals the number of 

predictions (therefore all predictions are “FAKE”) 

then the conditional loss will be included in the loss 

function. 

Several hyper parameters were tuned for this 

including the punishment factor and tightness factor. 

5.5 Occlusion Sensitivity 

Occlusion Sensitivity is also used as a subjective 

means to evaluate how learning is taking place. 



 

Figure 8 Occlusion Sensitivity Code 

6 Results 

6.1 Comparing Data Processing Models –

Validation Loss 

The following graphs show the Xception model using 

the full image, the error level analysis image, and the 

face cropped image. 

 

Figure 9 Validation Loss for different types of image 

processing 

The validation loss performs worst with a typical full 

image, it performs noticeably better with both ELA 

and the non-facial features cropped.  The novel 

cropping method performs slightly better than ELA. 

6 .2 Comparing Conditional Loss Models Tuning 

Phi and Tau – Validation Accuracy 

To evaluate the difference between conditional loss 

function hyper parameters, validation accuracy is the 

best evaluation metric because other evaluation 

metrics will not be effective in this situation.  The 

loss function cannot be used as these are different 

equations, for example a punishment factor of 10000 

will have a much higher loss than a punishment 

factor of 1 regardless of model performance, it is also 

very noisy.  Precision and recall cannot be used as 

well as the model is always predicting ‘FAKE’ so all 

precision and recall values are the same and therefore 

cannot help draw any comparison between hyper 

parameters.  The absence of better evaluation metrics 

makes validation accuracy the best choice. 

By comparing validation accuracy, all values 

converge to the same results except for high phi. 

 

Figure 10 and Figure 11 Tuning Phi and Tau 

6.3 Evaluation Metrics 

Table 1 and 2 indicate learning is not taking place as 

they each should perfect recall and a precision equal 

to the percentage of Fake images in the dataset 

(84.86%). 

   

Table 1 & 2 

6.4 Interpreting the Model with Occlusion 

Sensitivity 

Presently, the model is not learning and is only 

predicting each image as fake, we can see this from 

tables 1 and 2 as well as visually with occlusion 

sensitivity.  The results on the MNIST data set are 

shown to highlight the occlusion sensitivity algorithm 

works. 

 

precision recall

baseline full image 0.8486 1.0000

ELA 0.8486 1.0000

Non-facial feature cropped 0.8486 1.0000

precision recall

baseline loss function 0.8486 1.0000

high phi 0.8486 1.0000

low phi 0.8486 1.0000

high tau 0.8486 1.0000

low tau 0.8486 1.0000



Figure 12 Showing Occlusion Sensitivity Comparing MNIST 

data and DFDC data 

 

Figure 13 Occlusion Sensitivity Code Snippet 

7 Future Work 

Given more time, there would be many other research 

avenues to explore.  Some areas to explore would be:  

• Padding the cropped non-facial features.  

This may be helpful because the current 

model only crops the face, but by padding 

the non-cropped area, more context may be 

used while focusing on the face area. 

• Taking random patches of image data 

from the detected face, and a random 

patch of image data taken from the 

cropped features and comparing their 

distributions.  This may be helpful to 

compare pixel distribution in an area 

susceptible to deep fakes such as a face with 

an area less susceptible to deep fakes. 

• Exploring the audio data.  Perhaps in 

certain circumstances the sound may 

communicate information that may not 

match the visual information as an indicator 

of a forged image. 

• Combining vision models with sequential 

models.  This may work because deep fake 

pixel distributions may be less consistent 

when they are dynamic and in motion 

compared to when they are static. 

• Concatenate full images, with ELA 

images and cropped faces.  The 

combination of the image processing 

techniques to highlight certain features 

without removing other features such as the 

cropped features may prove an additional 

way to improve model performance. 

• Analysis of statistical distribution of 

image pixels.  This may help indicate a deep 

fake as forged pixels distributions may not 

match the distribution of pixels throughout 

the image. 

These are some of many areas of future work for 

deep fake detection.  Additional methods that can be 

suggested from the results are combining ELA and 

cropped images, or higher phi values and lower tau 

values. 

Appendix A – Successful Implementation Tips 

1. The dataset must be downloaded online, 

downloading directly to the cloud is not 

practical as most AWS instances won’t be 

optimized for machine learning computing 

and be able to store the 470 Gb.  I had to 

download all the data to my local machine, 

unzip it, and load it to an AWS S3 bucket, 

to be accessed by the AWS EC2 Instance. 

2. Downloading one video at a time so as to 

not keep extra information in memory is 

important to do video processing as needed 

3. To conserve instance memory, save small 

parts of the image that will be used in 

machine learning as directly as possible.  

An example might be save the numpy array 

of an image rather than the entire video or a 

pickle file of numerous arrays. 

4. For my model, I used the first frame of 

each video for 10,000 videos. 

5. For the labels, you must combine all the 

meta json files into a single file.  This is 

over a Gb to look up the label for each 

video. 

6. Training data can take a significant amount 

of time when you are downloading it mid 

training, and you will likely need to make 

manual early stopping functions. 

7. To save time, I experimented with running 

epochs over each mini batch to avoid 

repeatedly downloading the same data as an 

effort to save time, but the loss functions 

were too noisy to make sense from. 

8. You will likely have to iterate to find a 

stable batch size that can be held in 

memory. 

9. Due to the 84%/16% break down of 

FAKE/REAL videos, for Keras model fit 

class_weight={1:.84,0:.16}  

10. Keras Early Stopping was used as a call 

back for model fit with a patience of 2 

 



References 

1. A. Krizhevsky, I. Sutskever, and G. E. 

Hinton, "ImageNet Classification with 

Deep Convolutional Neural Networks,"  pp. 

1-9. 

2. Rossler, D. Cozzolino, L. Verdoliva, C. 

Riess, J.Thies, and M. Niebner, 

"FaceForensics++: Learning to Detect 

Manipulated Facial Images,"  2019, pp. 1-

14. 

3. Rossler, D. Cozzolino, L. Verdoliva, C. 

Riess, J. Thies, and M. Niebner, 

"FaceForensics: A Large-scale Video 

Dataset for Forgery 

Detection in Human Faces," 2018, pp. 1-

21. 

4. Bayar and M. Stamm, "A Deep Learning 

Approach To Universal Image 

Manipulation Detection Using A New 

Convolutional Layer,"  2016, pp. 1-6. 

5. Afchar, V. Nozick, J. Yamagishi, and I. 

Echizen, "MesoNet: a Compact Facial 

Video Forgery Detection Network," 2018. 

6. Cozzolino, D. Gragnaniello, and L. 

Verdoliva, "Image forgery detection based 

on the fusion of machine learning and 

block-matching methods," 2013. 

7. Chollet, "Xception: Deep Learning with 

Depthwise Separable Convolutions," 2017, 

pp. 1-8. 

8. J. Fridrich and J. Kodovsky, "Rich Models 

for Steganalysis of Digital Images," vol. 7, 

2012, pp. 868-882. 

9. J. Muindi, R. Kosaraju, and Y. Lundia, 

"Deep Fake Detector: Using ML techniques 

to Distinguish Real Images from Fake," 

2018, pp. 1-6. 

10. K. He, X. Zhang, S. Ren, and J. Sun, "Deep 

Residual Learning for Image 

Recognition,"  2015, pp. 1-12. 

11. N. Rahmouni, V. Nozick, J. Yamagishi, 

and I. Echizen, "Distinguishing computer 

graphics from natural images using 

convolution neural networks,"  2017, pp. 1-

6. 

12. P. Viola and M. Jones. “Rapid Object 

Detection Using a Boosted Cascade of 

Simple Features.” Proceedings of the 2001 

IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. 

CVPR 2001, Computer Vision and Pattern 

Recognition, 2001. CVPR 2001. 

Proceedings of the 2001 IEEE Computer 

Society Conference on, Computer Vision 

and Pattern Recognition 1, 2001. 

13. C. Fontas, W. Li & E. Mendiola, “Realistic 

Image Synthesis and Classification,” 2018, 

pp. 1-6. 

 

 


