
Voice activity detection for low-resource settings
(Speech recognition)

Abhipray Sahoo
Department of Electrical Engineering

Stanford University
abhipray@stanford.edu

1 Introduction

The challenge of voice activity detection (VAD) is to detect the presence of human speech in an audio
signal containing speech and noise. Typical VAD methods include feature-engineering based on the
power spectral density and periodicity; they are combined with learned statistical models such as
gaussian mixture models (GMM) or artificial neural networks for classification. There are several
applications of a VAD eg. as a front-end for automatic speech recognition to gate out non-speech
sounds or to switch coding schemes in codecs like Opus [1]. These applications are usually real-time
and thus require fast low-latency VADs. A popular implementation of a VAD is part of WebRTC
which uses a GMM model [2]. It is computationally efficient and can run in low-resource settings but
does not have the best accuracy. We improve on existing methods like the WebRTC using a deep
learning approach while constraining our implementation to have low computational complexity so
that it can run on a microcontroller and be low latency for real-time applications.

2 Related work

A good baseline for performance is the WebRTC VAD implementation [2]. It uses GMM models of
speech and non-speech sounds with input features as log energies of six frequency bands between
80Hz-4000Hz. It uses fixed point operations and is optimized for real-time use for web transmission.

The work done by Ko et al. [3] to quantize deep neural network weights demonstrates that it is
possible to improve on the WebRTC performance with lower latency. The optimized network has low
memory footprint as well as VAD error rate of only 14.1% compared to WebRTC’s 20.88%.

The work by Drugman et al. [4] does a mutual information analysis of different features, some source
and some filter-derived as well a fusion of features. The features are used as input to a neural network
for classification and performs better than state of the art (24% accuracy across all conditions). While
feature engineering led to good results here, we believe using low-level features could force a deep
network to learn the best features from audio for the task.

3 Dataset and Features

We use the VCTK dataset for the speech samples [5]. It contains English utterances by 109 speakers
amounting to roughly 44 hours of audio. From the Noisex-92 database [6], we add four types of
noise: babble, car, factory and white noises. The noise is added at two SNR levels: 0dB and 10dB.
The total number of hours in the dataset is 396 hours.

The full dataset is split into train, validation and test sets with a 85-10-5% split. This results in
roughly 20 hours of audio in the test set with uniform distribution of noise conditions.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



The audio is downsampled to 16KHz with 16-bit resolution. 40 log-energies on the mel-scale are
extracted from 32ms windows with 16ms overlap and hanning window. These are the features used
for the deep neural network. By simple energy thresholding, sequences of pairs of input features
and output labels are generated. The threshold for generating positive labels was selected as a value
between the average RMS and minimum RMS value across 32ms frames of the audio signal.

We also calculate sample weights for each input sequence, assigning 0 to timesteps that have been
padded. Positive labels are given weight corresponding the the number of positive class samples and
similarly for the negative class.

4 Baseline

Our baseline algorithm is the WebRTC VAD. Using the WebRTC VAD, we generated predictions
on VCTK original and noisy audio versions and compared against the ground truth labels. The
optimizing metric is the F1 score for classification. We care about reducing the false positive rate
while keeping the true positive rate high. The table below summarizes the results for different noise
conditions. FPR and TPR are the false positive rate and true positive rate respectively. F1 score is the
harmonic mean of precision and recall.

F1 score FPR TPR Precision Recall

babble_0dB 0.617 0.993 0.998 0.447 0.998
babble_10dB 0.737 0.349 0.838 0.657 0.838
factory1_0dB 0.623 0.965 0.990 0.454 0.990
factory1_10dB 0.752 0.239 0.780 0.726 0.780
raw 0.819 0.228 0.894 0.756 0.894
volvo_0dB 0.667 0.735 0.944 0.515 0.944
volvo_10dB 0.804 0.231 0.860 0.755 0.860
white_0dB 0.748 0.198 0.744 0.752 0.744
white_10dB 0.766 0.208 0.777 0.755 0.777

As observed, addition of noise severely degrades performance. It also shows the high false positive
rate in the presence of noise.

5 Deep Neural Network

We train a recurrent deep network architectures on sequences of feature and output classification
labels using a frame-wise binary cross-entropy loss. An RNN is well suited for this problem since it
can model the time dependence of speech in a noisy signal. We use a three-layered GRU network
since they are comparable to LSTM units but require fewer computations [7]. Each GRU layer is
followed by a batch normalization layer. A final dense layer with a single perceptron with sigmoidal
activation outputs the probability of speech.

The model is trained with binary cross entropy loss using the adam [8] optimizer. During training,
sample weights are used as described in the section on dataset and features.

Our goal is to minimize the size of the model while maintaining better-than-baseline performance. A
hyperparameter search was done with a Bayesian optimization framework [9] for layer sizes, dropout
and learning rate. The GRU model was trained with a hyperparameter search for network size in
three stages. In each of the three stages, 30 trials with different combinations of hyperparameters
were performed. In the first stage, the three layers were limited to a maximum of 128 nodes. The best
performing model gained a validation F1 score of 0.923. In the second stage, the layers were capped
to a maximum of 32 units leading to the best model validation F1 score of 0.915. In the last stage, the
layer sizes were capped to a maximum of 16 units. The best model among the thirty trials had 13, 10
and 4 GRU units in the three layers. It scored 0.908 F1 score.

The smallest model performs reasonably well. We trained it for another 150 epochs increasing the
validation F1 score to 0.921. The final model is shown in figure 1.

2



The final model uses only 3200 parameters. This amounts to 12,800 bytes using 32-bit floating
point weights. We use tensorflow-lite [10] to compress the network to 16-bit floating point weights,
reducing the memory footprint in half.

Figure 1: Final model architecture

6 Results

The final model was then evaluated on the test set across the different test conditions.

F1 score FPR TPR Precision Recall

babble_0dB 0.880 0.034 0.883 0.876 0.883
babble_10dB 0.932 0.013 0.915 0.949 0.915
factory1_0dB 0.873 0.033 0.873 0.874 0.873
factory1_10dB 0.927 0.014 0.911 0.944 0.911
raw 0.958 0.007 0.942 0.974 0.942
volvo_0dB 0.938 0.010 0.917 0.960 0.917
volvo_10dB 0.947 0.011 0.937 0.958 0.937
white_0dB 0.909 0.018 0.888 0.931 0.888
white_10dB 0.941 0.009 0.918 0.964 0.918

From the table, we can see that the model can work well even in the high noise setting of 0dB. It
outperforms the baseline on every single metric for all conditions. Plot 2 shows a comparison of the
two on a precision-recall plot. From this, it is clear that the GRU model has higher F1 scores for
every noise condition.

Figure 2: Precision-recall comparison of the baseline vs RNN model

3



Figure 3: Example speech predictions with noisy inputs using trained GRU network

We also observe through inspecting examples that the ground truth labels are noisy and can be set to
positive during silence. In spite of the noisy labels, the network appears to learn robust features that
help it accurately detect silences.

We also subjectively evaluate the performance of the network using audio from a laptop microphone.
When testing on such out-of-distribution inputs, we notice that the network produces a lot of false
positives. This indicates a domain-mismatch problem that will need addressing in the future.

7 Conclusion

We present a neural network based voice VAD that outperforms the popular WebRTC VAD in noisy
conditions. We optimized for the F1 score while constraining our network to be sufficiently small
to run in a low-resource setting like a microcontroller. We improved on the baseline performance
in non-noisy conditions on F1 score from 81.9% to 95.8% and similarly for noisy conditions. The
final quantized network footprint was 6.4KB. Our next steps are to re-train the network to reduce
domain-mismatch so it can be deployed in different acoustical environments. We would also like to
quantize the model to 8-bits to further reduce the memory footprint.

References
[1] Opus 1.3 released. https://people.xiph.org/~jm/opus/opus-1.3/. (Accessed on

01/19/2020).

[2] webrtc/common_audio/vad - external/webrtc - git at google. https://chromium.
googlesource.com/external/webrtc/+/branch-heads/43/webrtc/common_audio/
vad/. (Accessed on 01/19/2020).

4

https://people.xiph.org/~jm/opus/opus-1.3/
https://chromium.googlesource.com/external/webrtc/+/branch-heads/43/webrtc/common_audio/vad/
https://chromium.googlesource.com/external/webrtc/+/branch-heads/43/webrtc/common_audio/vad/
https://chromium.googlesource.com/external/webrtc/+/branch-heads/43/webrtc/common_audio/vad/


[3] Jong Hwan Ko, Josh Fromm, Matthai Philipose, Ivan Tashev, and Shuayb Zarar. Limiting
numerical precision of neural networks to achieve real-time voice activity detection. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
2236–2240. IEEE, 2018.

[4] Thomas Drugman, Yannis Stylianou, Yusuke Kida, and Masami Akamine. Voice activity
detection: Merging source and filter-based information. IEEE Signal Processing Letters,
23(2):252–256, Feb 2016.

[5] Cstr vctk corpus. https://homepages.inf.ed.ac.uk/jyamagis/page3/page58/
page58.html. (Accessed on 01/19/2020).

[6] Signal processing information base (spib). http://spib.linse.ufsc.br/noise.html.
(Accessed on 01/19/2020).

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling, 2014.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Hyperparameter tuning in cloud machine learning engine using bayesian optimiza-
tion | google cloud blog. https://cloud.google.com/blog/products/gcp/
hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization.
(Accessed on 03/16/2020).

[10] Tensorflow lite. https://www.tensorflow.org/lite. (Accessed on 03/17/2020).

5

https://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
https://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
http://spib.linse.ufsc.br/noise.html
https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization
https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization
https://www.tensorflow.org/lite

	Introduction
	Related work
	Dataset and Features
	Baseline
	Deep Neural Network
	Results
	Conclusion

