Advanced Wind Music Classification and Generation

Benjamin I. Rocklin William J. Dunlop
Department of Computer Science Department of Linguistics
Stanford University Stanford University
brocklin@stanford.edu wjdunlop@stanford.edu
Abstract

While music generation is a relatively well-explored field of deep learning, most
generators are limited to generating notes of static length and timing for the piano
strictly. In order to build a more compelling and robust music generation model, we
divide our task into two main segments: music classification and music generation.
Despite limited time to accomplish the latter, we reached interesting results from a
musical standpoint, and in doing so managed to build a LSTM-based RNN that is
quite effective at predicting the next note in sequences of trumpet soloist music.

1 Introduction

Music generation has been done to death by now, with many successful models in existence that
can build a simple melody that is pleasant to the ear given relatively simple parameters. Even
more complicated types of music such as canons can be consistently generated. Despite these
advances, generating a song that has non-uniform note patterns remains difficult, as the pitches,
times between notes, and lengths of each note in a sequence can influence those that come later.
Many approaches to melody generation have utilized music arranged for the piano due to its high
availability. As different instruments typically play different roles in an ensemble, whether as the
melody or the accompaniment, so too do certain musical instruments’ physical limitations obligatorily
pose restrictions on certain aspects of composing music for that instrument. — for example, while a
piano can easily play notes in different octaves in quick succession, a wind player might struggle
greatly to accomplish the same feat. One defining characteristic of brass music in particular is their
implicit range and interval-jump restriction, as it is physically taxing for a brass player to play higher
pitches for an extended period of time or play notes that are a large distance apart.

Given these successes and challenges, we separated our task into a division between music classifica-
tion and generation, with the goal of capturing natural musical rhythm, accompaniment techniques,
and instrument-specific restrictions. The input to our classifier algorithm takes a series of notes
encoded as tokens (more on this in the Dataset and Features section) and, given this, attempts to
output the next token in a given sequence via a deep network that combines LSTM and dropout layers
with a softmax output. Each token represents either a note beginning, a note ending, or a period of
time elapsing. Our generator takes as input a random sequence of tokens from the music dataset
(identical to the classifier’s input) and outputs a MIDI file comprised of the sequence of notes that is
generated. This sequence is generated by running our classifier model over the generated sequence of
notes.

2 Related work

Music generation is an incredibly well-researched topic, with many well-known and successful
implementations already existing and widely used. Nevertheless, most of these are plagued by the

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

fact that they either are piano-specific, which enables music to be generated that may not be possible
on other instruments; are applications specific, such as generators that can only produce canons or
certain genres and styles of music; or abstract away too many important musical details, such as note
length, timing, and rhythm.

Our project was initially inspired by the work done by Skuli [1]. Skuli’s work is incredibly well
known amongst other music generation practitioners and is considered to be the golden standard
of basic music generation with RNNs; anecdotally, several other students’ projects in other classes
that the authors of this project are familiar with were inspired by this same work. While certainly a
well-executed project, this project is rather basic, as it simply focuses on generating sequences of
chords and notes for the piano of static lengths. That is, no variation exists between the different
notes’ lengths and rests between each note. Additionally, Skili notes that the music generated by the
algorithm is hardly playable by humans, as the generated music contains many very strange artifacts.
That said, it is successful insofar as creating note sequences that sound pleasurable to human ears.
Due to the similarity of our problems, we built our initial Keras model to be identical to that Skuli
used and performed an architecture and hyperparameter search from there, which turned out quite
well. Additionally, we used some of Skiili’s code for converting sequences of notes into a dataset
and for basic music generation. Given more time, we had hoped to explore additional methods for
generation.

One project which laid much of the groundwork for our explorations was Clara, a MIDI generation
project by Christine Payne. Payne’s work [2] differed from Skuli’s due to its ability to support
multiple instruments. Additionally, it had support for violin MIDI generation, which, although it
has physical limitations, doesn’t have as many as trumpet. Rather than Skuli’s model, Payne used
FastAI’s presupplied AWD-LSTM network. While this yielded good results, we decided to avoid this
approach in order to allow ourselves more flexibility in altering our model and searching for good
hyperparameters. Nevertheless, her work yielded generated music that sounded far more natural.
Due to her use of encoding notes into tokens (the same format that we decided to use, more on this
in the next section), she was able to produce notes of varying lengths and with different offsets in
between note beginnings and endings. Consequentially, we borrowed this format in the hopes of
reproducing the same behavior with our different model, and we based much of our code for building
note sequences from MIDI files and converting sequences to new MIDI files around her work.

Finally, perhaps the most impressive generation was done by Fox [3]. Fox was able to produce
different kinds of canons using Al; of particular note is Fox’s crab canon generator, as crab canons
are particularly difficult to generate due to the fact that they must be played from beginning to end
and end to beginning. While Fox’s work is rather unrelated to that of Skuli and Payne, her work
played a significant role in helping shape our goals. We had initially hoped to generate crab canons
using bidirectional RNNs but, finding this was already done successfully and took nearly a year to
do so, we decided it was best to look into other techniques. This led us to find Skili and Payne’s
generators and helped us form goals as a consequence.

3 Dataset and Features

We curated our own dataset from 8notes. com [9], gathering their freely available MIDI files for
trumpet, as well as for other instruments we hope to continue our work with in the near future. To
separate the gathered MIDI data into tracks by instrument, we used the mido module by Bjgrndalen
[8] that provides objects and methods for interacting with MIDI. We have obtained just over 2,500
total MIDI files from the website, and selected only the 1,798 trumpet tracks for training.

Once we have our dataset of MIDI files ready, we convert them into another representation for our
model. Because we use an RNN, our data takes the form of a series of sequences. For our inspiration
of how to build these sequences, we took inspiration from Payne’s approach and borrowed elements
of her code to build our own sequences. Namely, we begin by converting the notes in the MIDI file
into lists of where notes begin and end along with symbols representing periods of wait between
these notes. For example, consider an example where a D is played on a trumpet for two "ticks"
and a C is played after this. Note that all MIDI files are encoded in a time system of MIDI "ticks",
so we use this as opposed to seconds and milliseconds as our main unit of time, also allowing our
model to become tempo-invariant. Our sequence would then look like "tD wait2 endtD tC", where
the "tD" token specifies that a D should be played on the trumpet (hence the t prefix), the "wait2"

http://www.8notes.com

token specifies that two ticks should occur before the next action, the "endtD" token specifies that
the trumpet should stop playing the D at this time, and "tC" specifies that a C should then be played
on the trumpet at the same timestamp in the MIDI. Although we do not make use of the prefixes
currently, we intend to continue this project after the class and make use of multiple instruments in
one stream of tokens.

Once we have the above tokens, we assign each start note, end note, and wait period (up to a maximum
of length 24 ticks, whereupon a new additional wait period is added) a unique integer identifier. We
then encode the list of the above tokens into these integer identifiers. For instance, if "tD" maps to
integer 30, "wait2" to 205, and "endtD" to 68, "tD wait2 endtD" would instead be represented as
[30, 205, 68]. From here, it is trivial to generate a list of sequences with a given length along with the
next note in the sequence from these encoded lists to feed into the model, which will be discussed in
greater detail farther down.

Due to the different lengths of the sequences, we have a different number of training examples for
each value of the sequence length hyperparameter. For example, if a song had five notes and we
chose sequences of length four as input, we would have one example comprised of the first four
notes as input and the last note as the output note. On the other hand, if we chose to use sequences
of length three, we would have two input sequences comprised of the first three notes and then the
middle three notes. After hyperparameter tuning, we decided to report the results for sequences
of length 10 with augmented data and 10 and 50 with no data augmentation. We use a 98/2 train
test split and a 98/2 train dev split on the prior 98 portion of the split due to the large nature of our
dataset,. With sequences of length 10 before augmentation, we have a total of 971577 sequences.
This yields a training set of size 933102, a validation set of size 19043, and a test set of size 19432.
With sequences of length 50, we have a total of 920197 sequences. This yields a training set of size
883237, a validation set of size 18026, and a test set of size 18394.

Additionally, we do have an optional data augmentation operation that can be used while compiling
the dataset to increase its size by a factor of 12. We do not use this by default, as it makes the dataset
far too large to train efficiently. We augment our data by shifting the pitch of each note up by one six
times and down five times and append each of the additional eleven examples to our dataset for each
sequence and output. We do not shift up or down 11 times in order to try and preserve realistic notes
that a given instrument could play. For example, shifting the pitch up 11 times could bias our model
towards always predicting very high notes for each instrument, and shifting the pitch down could
yield a low note bias, both of which we hoped to avoid by centering the augmentation around the true
note pattern.

4 Methods

After our architecture search, we decided to use an LSTM based model based on that of Skuli. For
our hyperparameters, we ended up using a model with 3 LSTM-dropout layers, a dense layer, and an
output softmax layer. The output layer can predict any label out of all the possible tokens: either an
instrument start note, an instrument end note, or one of the 24 possible "wait" tokens specifying a
duration either of a note playing or silence.

Using a softmax layer is useful because it provides the probability of one of several classes being
true. The softmax function is defined as
e
fla) =
> j=16€7

It operates by calculating the prediction score for each class z; and then picking the class with the
highest score by assigning a probability to each equal to the equation above. Because each class’s
value is divided by the sum of all class scores, the softmax effectively yields the probability of
predicting one class, as all these scores must sum to one, and the higher each class score is, the more
likely that class is the true label for the example.

Our model’s loss function is categorical crossentropy. The loss function is written

M K]]
Ly, §) = — (4" % log(5\"))
1=0 k=0

, where there are K classes and M training examples. In other words, it is the negated sum over all
the examples of the sum over the true value for a given class times the log of the predicted score for
that class (given by the softmax output described earlier). The inner sum will amount to O for every k
besides the true k. Thus, it is effectively the negated sum over all of the examples of the log of the
true class for each prediction. Thus, when the prediction is near 1 for the true class, the log will be
0, and the loss will be zero. On the other hand, if the prediction is near O for the true class, the log
will be highly negative, and, owing to the negated loss function, the subsequent loss will be high.
Consequently, we see that this works well for our multiclass prediction problem.

Finally, our model uses a series of LSTM and Dropout layers in the middle to achieve this. LSTM
(Long Short-Term Memory) layers are a form of RNN (recurrent neural network). RNNs are
neural networks where some of each neuron’s state is fed into the next neuron along with an input.
Consequently, this allows each neuron to gain a sense of time and sequence by accepting information
from the prior neuron, which works well for sequential data such as audio waves, speech, and, in
this case, music. One problem is that due to the fact that gradients (the way in which weights are
updated) are backpropagated through neurons ahead to neurons behind, the gradients for neurons
further back can "vanish" due to very small gradient magnitudes, resulting in these earlier layers not
contributing much to later layers. LSTM layers solve this by introducing a series of gates and passing
along additional information. In short, these gates function by deciding which information to keep
and which to throw away, allowing some of the information from layers far earlier to make a more
direct path to later neurons in the LSTM layer and have a greater impact, and other data that might
not be useful to be ignored. Dropout serves as a safeguard against overfitting. Each neuron is given
a probability to "drop out" or not be activated during a single pass. Because neurons drop out, the
network during each pass is less complex, forcing each neuron to do more computatation to avoid
bias and avoiding overfitting on the training set due to an overly complex model. As a result, while
the model is still highly complex and can conform to complicated decision boundaries, the model
will not overfit to the training set as often and should perform better on the dev and test sets.

S Experiments/Results/Discussion

For choosing the optimal architecture, we performed a brief search on a few hyperparameters of
the model, but were constrained by resources to running them for 5 or less epochs. For all of our
evaluations, we consider as our primary metrics the categorical cross-entropy loss of a classification
and as the accuracy. To yield an optimal sizing of the hidden layer of the LSTM, we compared two
models’ performance after 5 epochs.

neurons CCE Loss Accuracy
128 Train | 1.2267 0.6091
Dev | 1.2265 0.6087
Test | 1.2100 0.6130
256 Train | 1.4420 0.5399
Dev | 1.4513 0.5362
Test | 1.4227 0.5484

While the LSTM model with hidden layers of size 128 had lower losses than the model with hidden
layers of size 256, it seemed to have too high of a bias during training, and any initial edge it had
in accuracy would later be surpassed by a more robust network. Due to constraints on time and
computational power, we did not try any larger networks.

We started with two LSTM-dropout layers following the example of previous literature in this field.
However, we evaluated our model with three layers as well as with four, in order to explore the
possibility of having a deeper model.

Adding another LSTM-dropout layer seemed to make the model take longer to train per iteration, and,
holding epochs of training constant, reduced the accuracy, presumably since a deeper model would
take longer to train to reach equal performance. We decided to stay with 3 layers of LSTM-dropout
as a result.

We also tuned the input sample sequence length. We took the network architecture we developed over
the other tests and tested it on 10 tokens and 50 tokens. We used mini-batch gradient descent with

CCE Loss Accuracy
3x LSTM-dropout | Train | 1.4420 0.5399
Dev 1.4513 0.5362
Test | 1.4227 0.5484
4x LSTM-dropout | Train | 1.4709 0.5296
Dev | 1.4861 0.5257
Test | 1.4653 0.5305

batch size 64. We selected categorical cross-entropy loss as our loss function, as in the hyperparameter
searches, and trained each model for 50 epochs. In this below table, we have the accuracy and loss
for different example sequence lengths, trained to 50 epochs each.

CCE Loss Accuracy
sequence size 10 w/ augment | Train | 0.9880 0.6781
Dev | 1.0985 0.6576
Test | 1.0962 0.6587
sequence size 10 w/o augment | Train | 1.0065 0.6762
Dev | 1.1150 0.6548
Test | 1.1031 0.6562
sequence size 50 w/o augment | Train | 0.7321 0.7654
Dev | 09176 0.7149
Test | 0.9145 0.7152

Our models overfit the training set, to a degree. The effects of our data augmentation can be seen
in the marginal increase in overall accuracy between the sequence size 10 with augment and that
without.

We also managed to reach interesting results for our generation portion. In initial epochs of the
training, outputs were just a single repeating note. See midi_example_01 (epoch 10 of 50) in the
repository folder examples. Generating examples from later epochs’ weights, we were able to see
that the model had learned musical scales, and was producing often-repetitive runs of notes in a
scale. See midi_example_02 (epoch 25). This is, qualitatively speaking, a very important part of
the model’s learning, as the model should first be able to pick up which notes are "in-key". The model
was able to produce music with interval jumps, rests, and variation in rhythmic pattern. The first
two of these are particularly significant to our motivation for choosing a wind instrument for this
project, as the interval jumps were all playable, and the rests were spaced in a way that appeared to
end musical phrases. See midi_example_03, which is from epoch 25, for an example of interval
jumps, and see midi_example_04 for an example of rests.

Later, more complex melodies began to emerge. Also see midi_example_04 and _05, from epoch
40, for an example of this behavior. Often, the generation would appear to become stuck in a loop,
typically about halfway through a generated sequence, owing to the fact that some of the trained
model’s predicted outputs chain together. This could be resolved by generating the next note via a
probability distribution rather than taking the highest softmax score.

confusion-matrix.png in the code (it was too big to include here) contains a confusion matrix
for our model with sequence size 50. As shown, the model mostly predicts along the diagonal, and
most mistakes are in areas near the diagonal, showing that the predictions were accurate and it wasn’t
overfitting to any label. Note beginnings are smaller integers, endings are in the middle, and wait
periods are large. The element on the diagonal with high frequency is the "waitl" encoding (encoded
as 256), which appears in between every few notes and at the highest frequency by far. The matrix is
very sparse due to the fact that many 128 MIDI notes never appear on trumpet in our dataset.

6 Conclusion/Future Work

For future work, we would recommend extending this technique to multiple-instrument classifica-
tion/prediction and generation. (We may actually do this ourselves, for recreational purposes in
this upcoming stretch of social distancing!). We would also recommend exploring the way that this
technique can be used to capture and reproduce characteristics of different styles or genres of music.

7 Contributions

Ben focused on building an initial classification model, converting MIDI files into a dataset, and
dataset augmentation. Will focused on performing the hyperparameter search over AWS, outputting
generated sequences to MIDI files, and building the dataset. Both team members had a key role in
decision-making for every step of building a model.

References

Prior Work/References (cited in IEEE):

[1] S. Skdli, “How to Generate Music using a LSTM Neural Network in Keras,” How to Generate Music using a
LSTM Neural Network in Keras, 09-Dec-2017. [Online]. Available: https://towardsdatascience.com/how-to-
generate-music-using-a-lstm-neural-network-in-keras-68786834d4c5. [Accessed: 15-Mar-2020].

[2] C. M. Payne, “Clara: A Neural Net Music Generator,” CLARA: A NEURAL NET MUSIC GENERATOR,
23-Sep-2018. [Online]. Available: http://christinemcleavey.com/clara-a-neural-net-music-generator/. [Accessed:
15-Mar-2020].

[3] E. Fox "Automated Canon Composition," Churchill College, 10-May-2016. [Online]. Available:
http://minikanren.org/fox_diss.pdf. [Accessed: 15-Mar-2020].

Data and Libraries (cited in the library’s preferred style where possible, IEEE otherwise):
[4] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
[5] Keras, Chollet et al., "https://keras.io", 2015.

[6] Stéfan van der Walt, S. Chris Colbert and Gagl Varoquaux. The NumPy Array: A Structure for Efficient
Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37
(publisher link)

[71 M. S. Cuthbert and C. Ariza, “Music21: A Toolkit for Computer-Aided Musicology and Symbolic Music
Data.,” in ISMIR, 2010, pp. 637-642.

[8] Mido, Bjgrndalen et al., "https://mido.readthedocs.io/en/latest/", 2013.

[9] D. Bruce, “Free Sheet Music & Lessons,” Free Sheet Music & Lessons, 2001. [Online]. Available:
https://www.8notes.com/. [Accessed: 15-Mar-2020].

Code repository: https://github.com/BenRocklin/cs230proj

	Introduction
	Related work
	Dataset and Features
	Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions

