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1 Abstract
Autonomous robot companion operated through gesture-based language, CADDYIAN, helps to
protect divers in dangerous underwater environments. In this paper, we explore the capability of
resnet to classify CADDYIAN gestures using the public dataset from the CADDY project. For better
performace, we experimented training with both original and manually balanced datasets, with 3
resolution levels 240×180, 320×240, and 480×360, and with categorical cross entropy or hinge
loss. Our best single model is resnet-18 trained on dataset2500 with 320×240 image resolution and
categorical cross entropy, achieving a 97.85% test accuracy. Our best ensemble model is majority
voting, achieving 98.12% test accuracy. tSNE analysis indicates that true negative class (with no
gestures) can be easily confused with other classes. Additional error analysis identifies 6 major
error factors, and proposes generating more training data and prior hand localization to further boost
performance.

2 Introduction
To combat the risks underwater, autonomous robots accompany the divers when they operate in
harsh and poorly monitored environments. To help robots and divers to communicate, a unique
gesture-based communication language, CADDYIAN, was developed and tested during a pioneering
underwater project funded by the European community[1]. The goal of this project is to test out a
deep learning model that takes in a gesture image and outputs a prediction of gesture posed by the
diver.

3 Related work
Gesture recognition has become the center of human-robot interaction and draws a lot of attention
from scholars. Some gesture recognition models take video clips as input and use dense trajectory
extraction and motion boundary descriptors to capture the motion and then feed the data into classifiers
[2][3]. Some models take in depth images of the whole body and sort each pixel to different body
parts with a randomized decision forest classifier followed by articulated feature extraction with
convolutional neural networks (CNN) [4][5]. A recent paper proposed a multi-fusion model that
incorporated all the techniques above, taking depth video, intensity video, and mocap data all as inputs
through three separate modalities, and finally, fused them into one shared hidden layer. Randomly
dropping separate channels from different modalities gave the model extra robustness [6]. Each
proposed model has its strength, however, the multi-model should be superior for general cases
because it combines superiority of all the other models. For our problem, given that the input is image,
we anticipate using resnet alone for comparably good result. Some complementary experiments were
conducted upon resnet for better performance.

4 Dataset and Features
The CADDY Underwater Stereo-Vision Dataset contains a total of 32858 images for 16 gesture
classes and one true negative class (no gesture). Classes are extremely unbalanced but well imply
the frequency of gesture usage in reality. (See Figure 3 in Appendix Section 9.1) We thus randomly
CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



(a) Resnet architecture (b) Resnet shortcut.
Figure 1: Resnet architecture.

selected 4.5% (1492 images) to create the dev and test set respectively. For the training set, we tried
2 varieties to balance the data:

• Class weight: We use the rest 91% (29874 images) as train set. We set the class_weight of each
sample to be proportional to the reciprocal of the number of images in its class, so that the model
treats each class equally. We call this dataset all-scenarios.

• Oversample + Class weight: We randomly sample 2500 images for each class. However, 2
classes have more than 2500 images (i.e. 3308 images for start_comm and 13068 images with no
gestures). As the model can learn many lower-level features from these data, we kept all images
from these two classes. Class weight of these 2 classes is 2500 over the number of images in the
class, and that of other classes is 1. We call this dataset dataset2500.

The output of our algorithm is a probability vector of dimension 17 for each sample. The input image
size is 640× 480 pixels. We performed the following processes on the input images:

• Data augmentation: To overcome image variability and shortage, We performed: image rotation
(0◦ to 20 ◦), horizontal and vertical shifting (0 to 0.2 of the image size), zooming in and out (0.9 to
1.1 of the image size) and images normalization (with 1./255 coefficient).
• Shrink the image: Large images limit the batch size to 8 due to insufficient memory. To boost

computation speed, we shrink the images to 240× 180, 320× 240 and 480× 360, at which scales
the gestures are still intelligible by human. With smaller images, we increase the batch size to 64.

5 Methods
5.1 The model

We used original Resnet-18, Resnet-50, Resnet-101 architecture adapted from CIFAR-10 classification
task (Figure.1). In Resnet-50, one bottleneck block is composed of 1*1 conv - 3*3 conv - 1*1 conv
layers. The model has an initial 7*7 conv layer, a 3*3 max pooling layer, 4 stages of repeated resnet
blocks, an average pooling and a final dense softmax layer. The width and height of output halve
while the number of channels roughly double with proceeding to the next stage. Within each stage,
tensor size remains unchanged and the number of bottleneck blocks is variable within 3-5 range.
A major enhancement of Resnet is its shortcuts that add the input to a resnet block to the output
of the same block (direct summation if number of channels match, otherwise 1*1 conv to match
dimensions)(Figure.1b) The shortcuts ensure unnecessary blocks easily learn the identity function.
Thus, we can explore deep networks without much worries on vanishing gradients or over-fitting.

In terms of potential loss functions, we tried the most frequently used categorical cross entropy:

L(y, ŷ) = −
C∑
i=1

y ln(ŷ), and multiclass hinge loss [7]: L(y, ŷ) =
∑
j 6=yi max(0, sj − syi + ∆).

The hinge loss does not work as train set loss value stopped decreasing after 6 epochs.

5.2 Ensemble

In order to improve the performance of our model, we applied 2 ensemble strategies on our models:

• Majority vote: Each model makes a prediction on the sample. Pick the class that most model
think the sample belongs to.

• Highest precision: Have all models calculate the train set precision for each class using all-
scenarios. We use all-scenarios since it reflects the real distribution of classes. We then had all
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models make predictions on the dev and test set. For each sample, we pick the model with the
highest precision for its predicted class. For instance, in Table 1, Model 1 has the highest precision
for the predicted class in the training set, so the ensemble model predicts the sample as class 4. The
intuition behind the ensemble strategy is that the model is very likely to make a correct prediction
on the sample when its precision is high.

Table 1: Example of the ensemble strategy highest precision

Model 1 Model 2 Model 3
Prediction 4 16 9
Precision for the class 0.982 0.964 0.892

6 Experiments/Results/Discussion
6.1 Hyperparameter

Learning rate: We used the keras.callbacks.ReduceLROnPlateau to help us schedule our learning
rate. We start with 0.001, and decrease the learning rate by

√
0.1 whenever the training set loss hasn’t

decrease for 5 epochs until the learning rate is smaller than 0.5× 10−6.

Epoch: We train our models for 50 epochs at which the model hasn’t overfit train set as the dev set
loss still decreases. We stopped training for two reasons: 1) dev set loss is minimal after 50 epochs 2)
more time devoted to explore different models.

Batch size: We used the batch size of 64, which is the maximum batch size we can achieve without
going out of memory to reduce training time on one epoch.

6.2 Metrics

Evaluation metrics include accuracy (primary metrics), weighted AUC, weighted recall, weighted
precision and Tuned F1 (see Appendix 9.5).

6.3 Experiments

Experiment 1: For the first set of experiments, we used the dataset all-scenarios, epoch = 50, image
size = 240× 180, batch size = 64. We tested three varieties of resnet for this experiment: resnet18,
resnet50 and resnet101. See Table 2 below for the model performance. See Appendix Section 9 for
more model performance details.

We used the resnet 18 trained on all-scenarios with image size 240 × 180 as a baseline because it
is a simple model and small image size to start with. We expect more complicated model such as
resnet-50 and larger image size such as 480× 360 will improve our performance.

However, different from what we expected, resnet 18 and resnet 50 had the best test set accuracy for
all-scenarios. Although resnet 101 is more complex, it didn’t achieve a as good of a performance
as simpler model. However, the worse performance is not caused by overfitting, because the dev
set accuracy was still increasing at epoch 50. It is probably because resnet 101 has many more
parameters so that it needs to train for longer to learn the right parameters.

Table 2: Model performance on dataset all-scenarios

Train set accuracy Dev set accuracy Test set accuracy AUC
resnet 18 (Baseline) 93.34% 95.10% 95.17% 99.37%
resnet 50 95.74% 95.37% 94.91% 99.70%
resnet 101 88.96% 89.94% 90.41% 98.75%

Experiment 2: For the second set of experiments, we used the dataset dataset2500, epoch = 50,
image size = 240× 180, batch size = 64. We tested resnet-18 and resnet-50 for this experiment. We
didn’t test resnet 101 since it didn’t give good performance in Experiment 1. See Table 3 below for
the model performance. See Appendix Section 9.3 for more model performance details.

Both models give more accurate predictions when trained on dataset2500 than when they are trained
on dataset all-scenarios. However, the better performance doesn’t necessarily mean Oversample +
Class weight is a better way to balance the dataset. The dataset2500 contains more images due to
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oversampling, so the better peerformance may simply be caused by having the model train on more
data before it starts to overfit.

Table 3: Model performance on dataset dataset2500

Train set accuracy Dev set accuracy Test set accuracy AUC
resnet 18 96.99% 97.92% 97.45% 99.70%
resnet 50 96.45% 96.78% 95.84% 99.46%

Experiment 3: For the 3rd set of experiments, we tested resnet 18 (proved to have the best perfor-
mance by Experiment 1 and 2) on the dataset dataset2500 with epoch = 50 and batch size = 64.
We tried different input image size of 240 × 180 (the same resnet 18 model from Experiment 2),
320 × 240 and 480 × 360. See Table 4 for the model performance. See Appendix Section 9.4 for
more model performance details. The image size 320× 240 has the highest test accuracy of 97.85%,
even higher than when the image size is 480×360. Higher resolution doesn’t necessarily increase the
performance probably because the lower resolution is good enough for both the model to differentiate
the gestures so that higher resolution doesn’t provide new information about the gesture.

Table 4: Resnet18 performance on dataset2500 with different input image sizes

Train set accuracy Dev set accuracy Test set accuracy AUC
240 × 180 96.99% 97.92% 97.45% 99.70%
320 × 240 96.96% 97.79% 97.85% 99.62%
480 × 360 96.27% 97.39% 96.98% 99.58%

Experiment 4: Ensemble We used all the single models we trained in our ensembles. According to
Table 5, Highest precision strategy achieves the same performance as our best single model does, and
Majority voting’s performance on test set exceeds that of our best single model’s by a small margin.

Table 5: Ensemble model performance

Ensemble Models Dev set accuracy Test set accuracy
Highest precision 97.92% 97.45%
Majority voting 97.72% 98.12%

6.4 Analysis on Recall and Precision

We used the resnet-18 trained on dataset2500 with image size 240 × 180 as an example for recall
and precision analysis. The model achieved recall and precision scores above 0.95 for almost all
classes. The macro averaged precision is 0.972, and the weighted averaged precision is 0.975. The
macro averaged recall is 0.987, and the weighted averaged recall is 0.975. See figure 24 in Appendix
Section 9.3 for further details about precision and recall for each class. In the model’s confusion
matrix (See Figure 20 in Appendix Section 9.3), we see most of the misclassification happens when
the trueneg (the biggest class) are classified as other classes or when other classes are classified as
trueneg. This phenomenon is a natural result of having an unbalanced dataset, and it often causes
lower precision or recall for smaller classes. For example, 5 trueneg samples are misclassified as
boat, which leads to a 13.2% reduction in the precision of class boat (a small class with 33 images),
while only contributes 0.76% reduction in the recall of class trueneg (a large class with 656 images).
In this example, we see that the model already achieves a really good performance on classifying
trueneg, but the large number of trueneg images makes even a low error rate fatal.

6.5 Indication from tSNE

The tSNE plot (Figure 2) is plotted by extracting final flatten layer vector from Resnet 50-all-
scenarios. Most of the classes take up a unique domain or a group of closely located domains with
minor points misplaced on other classes’ domain. One dominant mis-classification observed is that
many trueneg (pink) points are mis-placed to other classes’ domains. It is a manifestation that there
is a wide range of body positions divers may take during missions as they are not communicating
with robots but some of which can be easily misinterpreted as one of the CADDYIAN gestures. To
improve the precision of communication, the gesture "start communication" should be set as the
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trigger, and only after the robot recognizes this gesture should it be alerted and keep tracking of the
diver’s action. Similarly, the gesture "end communication" is equally important.

Figure 2: tSNE plot for 17 classes of gestures.

6.6 Error Analysis

An error analysis was performed on Resnet 50-all-scenarios. Given that mis-classification between
trueneg and start_com, and trueneg and end_com should be the major concern in the real world
applications, the error analysis focused specifically on those two pairs (Table 6 in Section 9.5).
Among all the 166 start_com samples and 120 end_com samples in the test set, none of them are
classified as trueneg. On the other hand, among the 656 trueneg samples, 13 are misclassified as
start_com, and 6 as end_com, contributing 1.98% and 0.76% of reduction in the recall of trueneg
respectively. After sorting all the misclassified samples, we found 6 major reasons that can cause
the errors: 1) Similar hand gesture; 2) Dim light; 3) Similar body figure; 4) Fuzziness; 5) More
than one diver; 6) Distraction. Among those 6 factors, 3 of them can be solved by implementing
hand localization procedure before classification and 2 of them can be addressed by collecting more
training data in the same scenarios. This analysis gives us a direction on how to improve our model.

7 Conclusion/Future Work
7.1 Conclusion

Among all of our single models, Resnet-18 trained on balanced dataset2500 with input image size of
320× 240 has the best performance, achieving 97.45% test accuracy. Among our ensemble models,
majority voting has the best performance, achieving 98.12% for test accuracy. Through experiments,
our model can provide some insights for other underwater image classification problems: 1) image
with lower resolution may serve as better input since it can weaken the effect of noise; 2) combining
over-sampling and adding class-weight in the loss function can make up for the training set imbalance.

7.2 Future Work

Given the current weakness of our model, three directions we can follow to improve our model.

GAN Augmentation: CADDYIAN data collection is costly. Using GAN to generate images with
the current dataset can be a possible solution to solve dataset shortage.

Nested CNN - Bi to multi-classifier: Given that the trueneg images are easily confused with other
classes, a nested CNN with a binary classifier picking up all the trueneg images followed by a
multi-class classifier for the rest of the images can potentially improve our current model.

Nested CNN - localization prior to classification: Our current model can sometimes be distracted
by unimportant information and thus make wrong decisions. Implementing a hand-localization CNN
prior to the classification CNN can potentially improve our model by a great extant.
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8 Contributions
Veronica Peng: running experiments, construct ensemble, confusion matrix visualization
Xi Yu: dataset preprocessing, construct network prototype, tSNE analysis
Wenxi Zhao: construct metrics, model debugging, error analysis
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9 Appendix
9.1 Dataset

Figure 3: Class distribution for the classes

Figure 4: Sample input
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9.2 Experiment 1: resnet18, resnet 50 and resnet101 on all-scenarios

9.2.1 Loss/Accuracy/Learning rate vs. Epoch number

Figure 5: Loss/Accuracy/Learning rate for resnet-18 trained on all-scenarios

Figure 6: Loss/Accuracy/Learning rate for resnet-50 trained on all-scenarios
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Figure 7: Loss/Accuracy/Learning rate for resnet-101 trained on all-scenarios

9.2.2 Confusion Matrix

Figure 8: Confusion Matrix for resnet-50 trained on all-scenarios
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Figure 9: Confusion Matrix for resnet-18 trained on all-scenarios

Figure 10: Confusion Matrix for resnet-101 trained on all-scenarios
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9.2.3 AUC accuracy

Figure 11: AUC accuracy for resnet-50 trained on all-scenarios

Figure 12: AUC accuracy for resnet-18 trained on all-scenarios

Figure 13: AUC accuracy for resnet101 trained on all-scenarios
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9.2.4 Precision, Recall and F1 scores for subclasses

Figure 14: Precision, Recall and F1 scores for resnet-50 trained on all-scenarios
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Figure 15: Precision, Recall and F1 scores for resnet-18 trained on all-scenarios
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Figure 16: Precision, Recall and F1 scores for resnet101 trained on all-scenarios
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9.3 Experiment 2: resnet18 and resnet 50 on dataset2500

9.3.1 Loss/Accuracy/Learning rate vs. Epoch number

Figure 17: Loss/Accuracy/Learning rate for resnet-18 trained on dataset2500

Figure 18: Loss/Accuracy/Learning rate for resnet-50 trained on dataset2500
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9.3.2 Confusion Matrix

Figure 19: Confusion Matrix for resnet-50 trained on dataset2500

Figure 20: Confusion Matrix for resnet-18 trained on dataset2500
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9.3.3 AUC accuracy

Figure 21: AUC accuracy for resnet-50 trained on dataset2500

Figure 22: AUC accuracy for resnet-18 trained on dataset2500
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9.3.4 Precision, Recall and F1 scores for subclasses

Figure 23: Precision, Recall and F1 scores for resnet-50 trained on dataset2500
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Figure 24: Precision, Recall and F1 scores for resnet-18 trained on dataset2500
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9.4 Experiment 3: resnet18 on dataset2500 with different input image sizes

9.4.1 Loss/Accuracy/Learning rate vs. Epoch number

Figure 25: Loss/Accuracy/Learning rate for resnet-18 trained on dataset2500 with input image size 320× 240

Figure 26: Loss/Accuracy/Learning rate for resnet-18 trained on dataset2500 with input image size 480× 360
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9.4.2 Confusion Matrix

Figure 27: Confusion Matrix for resnet-18 trained on dataset2500 with input image size 320× 240

Figure 28: Confusion Matrix for resnet-18 trained on dataset2500 with input image size 480× 360
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9.4.3 AUC accuracy

Figure 29: AUC accuracy for resnet-18 trained on dataset2500 with input image size 320× 240

Figure 30: AUC accuracy for resnet-18 trained on dataset2500 with input image size 480× 360
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9.4.4 Precision, Recall and F1 scores for subclasses

Figure 31: Precision, Recall and F1 scores for resnet-18 trained on dataset2500 with input image size 320×240
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Figure 32: Precision, Recall and F1 scores for resnet-18 trained on dataset2500 with input image size 480×360
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9.5 Error Analysis

Mis-classified Photo True Label Prediction Categories of Error

trueneg start_com Similar gesture: The gesture
is unintentionally similar to
"start communication". To
this point, its hard for the
model to tell, more data in
start_com class may help.

trueneg start_com Dim light: Dim light made
the gesture unclear and hard
for the model to learn. More
training photo taken in this
scenario should be fed into
the model.

trueneg start_com Similar body figure: Instead
of feeding the whole body im-
age into the model, the model
can be improved by first using
a CNN to localize the arm-
hand segment and then feed
the segment data into the clas-
sifier.

trueneg start_com Fuzziness: Might be solved
by adding median filters dur-
ing the image pre-processing.

trueneg end_com More than one diver: More
training photo with more than
one divers needed for im-
prove the model.

trueneg start_com Distraction: The fluores-
cent tube in front of the
diver’s chest might be mis-
recognized as the gloves that
highlight hands. More data
needed for the model to learn
their difference.

Table 6: Error Analysis
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9.6 Metrics

Primary Metrics: Accuracy = TP+TN
TP+FP+FN+TN

Other metrics: Weighted AUC =
c∑
i=1

AUCi × |Ci|
|Ctotal|

Other metrics: Weighted Recall(WR) =
c∑
i=1

( TP
TP+FN )i × |Ci|

|Ctotal|

Other metrics: Weighted Precision(WP) =
c∑
i=1

( TP
TP+FP )i × |Ci|

|Ctotal|

Other metrics: Tuned F1 = (β2+1)×WR×WP
WR+β×WP (we set β = 2 for the emphasis on weighted recall)
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