Graph Neural Networks in Classifying Rock
Climbing Difficulties

Cheng-Hao Tai Aaron Wu Rafael Hinojosa
Microsoft Corporation Evisort Inc. Microsoft Corporation
Stanford University - Stanford University
c2tai@stanford.edu aaron@evisort.com rahinojo@stanford.edu
Abstract

Assigning difficulties to rock climbing problems is often a contentious procedure.
In this work, we pioneer the application of graph convolutonal networks in predict-
ing difficulty classes of rock climbing routes on the MoonBoard training apparatus.
We build a hetergenous graph of problem / hold nodes and benchmark a PyTorch
implementation of the GCN against classic statistical learning algorithms along
with fully-connected feed-forward networks. Our best model achieves a 0.73 aver-
age AUC across all difficulty classes, validates GCNs’ relative immunity against
class imbalance, and demonstrates a surprising insight into the optimal number of
graph convolutions.

1 Introduction

Given rock climbing’s recent increase in popularity, we created a neural network for classifying
climbing routes (a.k.a. problems) into suitable difficulty categories. This tool could either speed up
or replace traditionally heuristic-based approachs to ranking climbing problems, thereby lowering
the barrier of entry for anyone seeking to create their own routes or validate the grading accuracy
of pre-existing ones. We solved this problem using a classifier built for the "Moonboard" apparatus
— a modular climbing wall of fixed dimensions and pre-set hold configurations (Figure 1) and
took inspiration from the NLP domain where Graph Convolutional Network architectures have
demonstrated great success in document classification tasks. Given a MoonBoard climbing route, we
are able to assign it an appropriate difficulty level.

Our codebase can be found here: https://github.com/gestalt-howard/moonGen

2 Related Works

Existing machine learning literature for rock climbing is sparse and primarily utilizes Bayesian
approaches towards categorizing route difficulties. The earliest attempt of its kind was in 2012 [7]]
where the authors applied chaos theory in conjunction with a Variational-Order Markov Model to
first generate, then classify climbing routes. More recently, [8] presented a novel application of
Whole-History Rating (WHR) [3]] to determine route difficulties based on historical user ratings. As
far as we’re aware, [4] is the first to apply deep learning (using a convolutional neural network) in
classifying route difficulty.

Looking outside of climbing-specific literature, many inspirations can be drawn from the NLP field
— specifically text classification — through the observation that just as words constitute sentences,
rock climbing problems are composed of holds. In 2018, Cer et al. [2] demonstrated the power of

CS230: Deep Learning, Winter 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

robust sentence embeddings in solving text classification tasks. In their paper, Cer et al. utilized an
attention mechanism to capture contextual relationships of words in a sentence to generate weights
subsequently used to aggregate word vectors into sentence encodings.

Using a graph neural network [1]], it is possible to explicitly encode the aforementioned attention
weights through edge weights in an adjacency matrix. In [5], Kipf et al. presents the graph convolu-
tional network architecture that is expanded upon by Yao et al. in [9] for a text classification task on a
heterogenous graph of document / word nodes.

3 Dataset and Features

On their website (https://moonboard. com), Moonboard hosts a database of Moonboard climbing
routes, created and ranked by a global climbing community. For a given hold configuration (i.e.
Moonboard 2016), routes are denoted using multi-colored circles superimposed on a stock Moonboard
image. These circles specify a hold set and define a problem: green, blue, and red circles indicate
starting, intermediate, and end positions, respectively (Figure 1). MoonBoard 2016 has exactly 140
holds.

Assembling this dataset required a custom Selenium scraping script that clicked through thousands of
pages of Moonboard problems, stopping on each page to extract metadata tags, labels, and features.
The data is separated into 11 distinct difficulty categories denoted as V4 through V14 with ascending
numerical values corresponding to increasing route difficulty. Mirroring the real-world distribution
of climbers (most aren’t expert-level), our dataset is highly imbalanced with V4 and V5 routes
accounting for over 50% of 13,589 problems while V11 through V14 contribute approximately
1%. To counteract this extreme data imbalance, we implemented a balanced sampling protocol that
upsamples sparse classes and ensures that each difficulty category is equally-represented during
model training. For our experiments, we sampled / upsampled 2,000 problems from each difficulty
category and created an 80-20 train-test split for a test set size of 4,400 samples. The train set was
further divided in an 80-20 train-dev split for a final dev set size of 3,520 and a final train set size of
14,080.

MoonBoard problem data were further preprocessed into either one-hot or multi-hot representations.
In its multi-hot form, each route is represented as a 140-dimensional vector with each dimension
encoding presence / absence of one of the 140 holds. A PCA-decomposed 2D visualization of the
problem corpus is shown in Figure 1.

MoonBoard Problems PCA Visualization

R e = RO=E =
e STO e s
c ¢ @0 9> a@a b0 o ¢ @09 a@cbeu
EeoNo e ~a . EeonNe ¢ -4 - 10
@ v i joman< O Q-ui"o-:—@‘.
c\»’up"’f-. -:v("-'Q.‘f‘e
B N I SR SR B I N SR o
P & AP O V=l v § P & AP O V=i v £
R Ao Poan oQé-wsoo-.sa L
P AR R on--bss@ere 5
P @areN e E e P @areN o E e ,
o5 @Le o v 0m o5 @4 o oms)
Qet-g-0 V¢ Qe -@-0 N -
" me - ep gu) me @ e wp P 10
AN 12D Al 0
CLIVIEZ HARDIZR CLIVIEZ HARDIER

Figure 1: (left) MoonBoard stock configuration (version 2016), (center) A specific MoonBoard route on the

) 05 1o 15 20
PCA Component 1

2016 configuration, (right) Visualization of PCA decomposition of MoonBoard problems

4 Methods

4.1 Graph Convolutional Network

The Graph Convolutional Network as presented by [5] provides a framework by which node-level
features can be combined with neighbors in a nonlinear transformation whose parameters are learned

Hidden Layer Hidden Layer
Input ‘. ° Output
Y RelLU Y RelLU
—¢ | — |)
. . LY

»

N

Figure 2: At the first convolutional step, any node has access to its 1-hop neighbors. At the second convolution,
nodes can "see" features from their 2-hop neighbors. Generally, j convolution steps yields access to features
from j-hop neighbors.

‘Word Document Graph

Figure 3: A heterogenous corpus graph for document classification using a Text GCN [9]. Nodes come in 2
types: document entities and word entities. The different colors correspond to different node categories (notice
only document nodes are colored).

through backpropagation. Consider a graph G = (V| E) where V(|V| = n) and F are the set of
nodes and edges, respectively. Each node in V' is assumed to be connected to itself (self-adjacency)
and is represented as a row in X € R™ ™. Graph G also has an adjacency matrix A with a
corresponding degree matrix D where D;; =) ; Aij- A one-layer GCN featuring 1 convolution step
is computed as

LY = p(AXW,) (1)

where A = D=2 AD~?% is the normalized symmetric adjacency matrix, Wy € R™*¥ is a weight
matrix, and p is an activation function. Note that X can also be denoted as L(®). This one-step convo-
lutional operation captures information about a node’s immediate neighbors (Figure 2). By stacking
multiple GCN layers, graph nodes can be embedded with features from neighbors successively further
away,

LU+ p(gL(j)Wj))
where j denotes the layer number.

4.2 Defining Adjacency and Text GCN

Extending the vanilla GCN [5]] to the Text GCN [9] involves framing graph G as a heterogenous graph
(Figure 3). In our MoonBoard application, an equivalence can be established between documents and
problems — words and holds. The adjacency matrix in such a graph is defined as

PMI(4,j), if%,J holds
IDF(j) if ¢ problem j hold
Ai i ’ . 3
J 1, ifi=j)
0, otherwise

where PMI of a hold pair ¢, j is computed as
. (i, j) o #W(EL) #W (i)
PMI(z,j) = log ——*~ %)= 5 Dblt)=
(6.4) p(i)p(4) 6.7) #W) #W
In Equation 4, #W (i) is the number of sliding windows over the problem corpus that contains

the hold ¢, #W (4, j) is the number of sliding windows that contain both ¢ and j, and #W is the
number of sliding windows total. For experimental purposes, we took two approaches in defining

4)

sliding windows: (1) over the scope of an entire problem (coined PMI) and (2) using a 5 x 5 filter
(approximately half-armspan of an average climber) that slides over the canvas of a MoonBoard wall
(Figure 1). Approach (2) was inspired by convolutional filters in CNNs and is coined Win-PMI for
"Windowed" PMI.

Adapting Equation 2 to Text GCN for two steps of convolution on a multi-class classification task
with ReLU activation, we get

7 = softmax(AReLU(AX W)Wy) (5)
with an adapted cross-entropy loss function
F
L== > VyrlogZy (6)
deYp f=1

where Vp is the set of MoonBoard problem indices that have labels and F' is the number of difficulty
classes (11 in our case). This loss function only considers a subset of V' that are (1) problems and (2)
have labels. Referencing Equation 5, two steps of convolution in a heterogenous problem-hold graph
encodes an intuition of bridging problems to neighboring problems via shared holds. We expect these
problem-hold-problem connections to significantly help in discriminating difficult routes from easy
ones.

5 Experiments, Results, and Discussions

We ran a total of 17 experiments (see Table 1) that can be categorized into three broad categories:
Baselines, Dense, and GCN. The Baselines category features a battery of classic statistical learning
models. The Dense experiment category refers to a PyTorch implementation of fully-connected
feed-forward networks and has two variations: Shallow and Deep, referencing the number of hidden
layers in each network. The GCN family of experiments features several varieties and are prefixed by
GCN under Table 1. Each successive tag describes (1) (S) /(L) the capacity of hidden layers as small
or large, (2) 25/4S the number of convolution steps, (3) 0H/MH one-hot or multi-hot features, and
(4) PMI/Binary/Self-Binary/Self-PMI/Win-PMI adjacency tags. Tag PMI refers to Equation 3
(Approach 1), Binary refers to a version of Equation 3 where all non-zero values are set to 1, the
Self- prefix denotes a version of adjacency where the diagonals of A are re-set to identity after

normalization to A, and the prefix Win- identifies Equation 3 (Approach 2).

Table 1: Summary of experiment results with per-class F1 scores and averaged accuracy, F1, and AUC scores

Per-Class F1 Scores Avg.
Experiment V4 V5 V6 ... V12 V13 V14 F1 AUC
Logistic Regression 052 035 025 .. 022 0.00 0.00 023 0.70
SVM 0.53 040 031 .. 034 033 0.00 029 0.66
Random Forest 066 036 026 .. 024 000 044 028 0.67
Gradient Boosting 0.59 035 028 .. 027 025 0.00 027 0.62
MLP 0.58 038 034 .. 0.00 000 0.00 022 0.66
Dense Shallow, MH 0.61 038 032 .. 037 000 0.00 026 0.67
Dense Deep, MH 048 040 023 .. 021 0.00 0.00 022 0.65
GCN (S) 25, OH, PMI 036 028 022 .. 048 024 0.10 024 0.63
GCN (L) 2S, OH, PMI 033 027 023 .. 048 025 0.13 024 0.64
GCN (S) 2S5, MH, PMI 0.57 038 033 .. 049 0.00 0.00 029 0.73
GCN (L) 2S, MH, PMI 0.58 038 033 .. 045 0.00 0.00 029 0.72
GCN (S) 2S, MH, Binary 054 038 033 .. 046 0.00 0.00 028 0.72
GCN (S) 2S5, MH, Self-Binary 0.58 0.41 030 .. 0.14 0.00 0.00 025 0.70
GCN (S) 25, MH, Self-PMI 059 038 029 .. 056 000 0.00 027 0.68
GCN (L) 4S, MH, PMI 052 034 033 .. 050 0.00 037 031 0.73
GCN (S) 2S, MH, Win-PMI 055 037 033 .. 048 0.00 0.00 0.28 0.73
GCN (L) 2S, MH, Win-PMI 0.57 038 034 .. 047 0.00 0.00 029 0.72

Referencing Table 1, the first observation is that GCN models using multi-hot features outperform
baseline models and PyTorch Dense implementations across the board on averaged AUC. This result

lends credibility to the effectiveness of utilizing nearby neighbors’ features in classification tasks.
Interestingly, amongst the best-performing models, using either PMI, Binary, or Win-PMI all seem to
yield approximately equivalent results. This suggests that the connections amongst nodes themselves
are more important than the weights of these edges.

Additionally, we observe that the only GCN model featuring four convolutional steps yielded the
best averaged F1 and AUC scores — a surprising finding since the authors of [9]] reported negligible
performance gains after two GCN layers. This result suggests that there are meaningful relationships
not only between MoonBoard problems sharing the same holds (1 degree of separation), but also in
relationships 1 degree further. Intuitively, this might be interpreted as, "If my neighbors are mostly
V5 and my neighbor’s neighbors are also V5, I am likely to be a V5 as well."

Window Size 0 Window Size 0

vio Vi1 vz w3 w4

W W v oW w Vo vii vz vz w4
pred

Figure 4: Confusion matrices on test data (left) GCN experiment multi-hot, 4 steps, regular PMI, (right) Logistic
Regression. We can see that while logistic regression performs better near the lower-difficulty region, GCN is
able to capture difficult problems more accurately.

Finally, referencing the two confusion matrices in Figure 4, we observe that it is really in the higher-
difficulty classes where the 4-step GCN outperforms logistic regression. This behavior is well-aligned
with our hypothesis that explicit graph connections better-enable label information to propagate to
relevant neighbors even with a limited number of training samples. In this way, GCNs are far less
susceptible to class imbalance than the classic machine learning algorithms or even fully-connected
feed-forward networks.

6 Conclusions / Future Work

In this work, we presented a novel application of graph convolutional networks to the rock climbing
domain by adapting the Text GCN framework used in document classification. We found that GCNss,
in conjunction with multi-hot feature embeddings, provide a signficicant improvement over classic
statistical learning algorithms (i.e. logistic regression, random forest, etc...). Moreover, we also
discovered that a 4-step graph convolutional operation yielded the best across-the-board results —
a finding that deviated from conclusions made by authors of TextGCN [9]] and suggests that the
optimal number of graph convolutions is highly domain-dependent. Finally, we validated that GCNs
are indeed less susceptible to data imbalance, as compared with standard machine learning / deep
learning algorithms. Given more time, we would’ve liked to explore a generative application [6]
capable of producing a new Moonboard problem, given a user-specified difficulty.

7 Contributions

Cheng-Hao implemented the baseline statistical learning experiments, established evaluation metrics
used to assess all models’ performances, and maintained the project Github repository. Aaron
assembled MoonBoard data, established an early GCN baseline, and created the balanced sampling
protocol. Aaron and Cheng-Hao co-authored the PyTorch implementations of the Dense and GCN
frameworks and co-planned the series of experiments to run. Aaron and Cheng-Hao both contributed
to the drafting of this report. Rafael offered insights into alternative loss functions amenable to data
imbalance on a graph network.

References

[1]

(5]

[6]

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Push-
meet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive
biases, deep learning, and graph networks, 2018.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah
Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and
Ray Kurzweil. Universal sentence encoder, 2018.

Rémi Coulom. Whole-history rating: A bayesian rating system for players of time-varying
strength. volume 5131, 09 2008.

Alejandro Dobles, Juan Carlos Sarmiento, and Peter Satterthwaite. Machine learning meth-
ods for climbing route classification. Web link: http://cs229.stanford.edu/proj2017/final-
reports/5232206.pdf.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

[7] C. Phillips, L. Becker, and E. Bradley. strange beta: An assistance system for indoor rock

climbing route setting. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(1):013130,
Mar 2012.

[8] Dean Scarff. Estimation of climbing route difficulty using whole-history rating, 2020.

[9] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification,

2018.

	Introduction
	Related Works
	Dataset and Features
	Methods
	Graph Convolutional Network
	Defining Adjacency and Text GCN

	Experiments, Results, and Discussions
	Conclusions / Future Work
	Contributions

