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Abstract

This paper investigates using computational color naming approach that mapping
pixel values from fashion images to standardized color names. Current commer-
cialized solutions are all based on vendor-generated linguistic tags such as "red
sweater", "black jeans" putting into the HTML meta data, and letting user perform
text searches based on those tags. In this work, we consider using a convolutional
neural network (CNN) and softmax activation to classify the color of fashion im-
ages. Since the color naming only focused on ROI (region of interest) in the image,
we use Region-based convolutional neural network (R-CNN) to focus on pixels
within the detected boxes as the training input, and use softmax for classification
and learn the fashion colors. More specifically, we adopt the Mask R-CNN with
the Semantic Segmentation approach to adapt to the fashion images. This approach
can let users filter their favorite fashions by a standardized color naming without
the help of linguistic color tags from the online images.

1 Introduction

We propose a deep learning approach to learn the color of fashion images. Understanding the color
of fashion images can allow customers filtering their favorite cloth based on a selected color. The
usage scenario could be in a huge amount of fashion images data store, the customer would like filter
those online images (collected from multiple vendors/websites) by a specific color category. For
example, when a customer searches a sweater, and then want to filter by ‘Red’ sweater, our backend
deep learning service will have all the pre-analyzed sweater images within the Red category returning
back, showing as an example in Figure 1.
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Figure 1: Customer filter sweaters with ‘Red’ color to showing up

Even though most of the online stores have the color filtering functions, but those are implemented
by linguistically labelling approach through HTML tag, instead of auto-classification through a
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computational technology. Also, the color tag could be vague, such as ‘vanilla’, ‘peach’, ‘olive’,
‘navy’, etc., the name convention for different vendor have different and randomly defined color
names. Sometimes using HTML tag could be inaccurate if the product have multiple colors available.
For example, the tag includes ‘red’, ‘white’ and ‘blue’ in html metadata, but the actual product image
only showing up ‘blue’ on the webpage. Thus, we need to define a standardized color category, and
based on that analyze fashion image itself to get a standardized color category. We also facing the
challenge that the shape of cloth could be variable and need to wipe out the background color.

To resolve those issues, we utilized the latest version of R-CNN [1], Mask R-CNN [2], to identify
cloth colors. Mask R-CNN is derived from Faster R-CNN [3]] approach with semantic segmentation
capability, which is a task of classifying each and very pixel in an image into a class. The granularity
of understanding at pixel level is very suitable for our goal since we are mostly focused on colors
of pixels in the region of the cloth. We can put more weights to the pixels in the object boundary
than the surrounding pixels when learning the color. Current classification researches through CNN
are mostly focused on types of objects (person, vehicles, animals etc.), or if used in fashion domain,
they are on identifying the types of cloth (shirts, jacket, pants etc.). In this work, this is the first
experiment to use CNN, or more specifically - a Mask R-CNN approach, to make classification of
colors of objects instead of the types of objects.

2 Dataset and Features

Fashion-MNIST [4] is one of the most popular dataset for fashion deep learning, but it does not apply
to us because it’s mainly used for training the category of cloth and all are grey-scale images. The
DeepFashion [5]] is more suitable for us on such Color-Labeling project. It has over 800,000 diverse
fashion images and rich annotations with additional information about landmarks, categories, pairs
etc. The dataset consists of 5 different kinds of predicting subsets that are tailored towards their
specific tasks. In our project, since we are more focused on shopping website images from different
vendor/department store, we will use images in the “In-shop Clothes Retrieval Benchmark™ as our
training dataset. That dataset has the most similar patterns and styles with our target shopping images.

However, the format of the annotations of DeepFashion is not compliance of our project. In this
project, we leverages Detectron2 [6] project in our implementation, which able to recognize objects
represented by the classes from the COCO (Common Object in Context) dataset [[7]. Thus, we will
transform from JSON annotation format of DeepFashion into COCO format as data inputs, which
will be more detailed explained in later sections.

3 Preprocessing

An issue of existing color naming in the dataset is using vague or subjective names while not follow a
standard name convention. To align with our purpose of color prediction, first, we want to standardize
the color annotation of those images into one of those 10 broad categories: 1: Black; 2: Blue; 3:
Green; 4: Magenta; 5: Pink; 6: Purple; 7: Red; 8: Yellow; 9: White; 10: Navy (Deep Blue). Next,
encode the colors as a vector to represent each type. For example, if the output Y =[[00010000
0 0 0 0]] which means the output color is Green. To give a smoothly unified training process with
fixed input size X in the training dataset, we will resize all image by 256 x 256. The image will use
RGB encoding, thus the input vector will be a fixed vector size of 256 * 256 * 3 = 196608 elements
for each training example.

After standardize the color name convention of all the training examples, we need to generate the
JSON file with COCO format /] as the date input. Here we used the LabelMe tool [§] to generate
boundary annotation of the training examples, and then using a python script (labelme2coco.py) [9]]
to transform the JSON annotation generated by LabelMe to COCO format. After that, we can directly
input out training dataset to Detectron2 API [10].

4 Methods

Since we only interested in the color of the cloth which is a region of interest (ROI) in the picture,
we start the idea of Region-based convolutional neural network (R-CNN) architecture to train the
data. The goal of R-CNN is to take in an input image, correctly identify where the main objects (via



a bounding box detected by Object Detection algorithms) in the image, and then use CNN to train
the region in the bounding box only. The general R-CNN are used to detecting the types of objects.
Since we are interested in classifying the color of objects, more specifically, the color naming process
for fashion image needs to (in Figure 2):

1. Generate a region proposal using Object Detection or Selective Search algorithms used as a
bounding box to generate Region of Interest (ROI).

2. Standardize the size of proposed region in the image and pass it through a pre-trained CNN
or modified version to be used as the feature extractor

3. Using softmax regression model to output the classified category of the interested object.
Here we are focus on the normalized color of the interested object.
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Figure 2: R-CNN: training detected region with CNN features

Based on the idea of R-CNN, there are two advanced version, Faster R-CNN []3]] and Mask R-CNN
[2]. Instead of generating a bunch of potential regions using Selective Search [11]], Faster R-CNN
uses a single CNN to both carry out region proposals and classification. First, the image is provided
as an input to a convolutional network which provides a convolutional feature map. Then, a Region
Proposal Network works by passing a sliding window over the CNN feature map and at each window,
outputting k potential bounding boxes and scores for how good each of those boxes is expected to
be. The predicted region proposals are then reshaped using a Rol pooling layer which is then used
to classify the image within the proposed region. We utilized the Detectron2 [|6] framework with
model-zoo package. In the package, it adopts classical AlexNet [12]] as CNN to achieve the goal of
feature mapping and classification. It’s architecture showing as Figure 3.
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Figure 3: AlexNet: Consists of 5 convolutional layers and 3 fully connected layers

Since we classifying output as 10 categories of colors, the output layer will use Softmax activation

with 10 classifications, i.e., 0(Z); = 721%Zi€zj , where Z is the linear output from softmax layer.
i=1¢

We also adopt the latest Mask R-CNN implementation in Detectron2 to accurately training and

detecting the colors at pixel level. Mask R-CNN is an extended version of Faster R-CNN for pixel

level segmentation. Mask R-CNN does this by adding a branch to Faster R-CNN that outputs a

binary mask that says whether or not a given pixel is part of an object. The branch is just a Fully

Convolutional Network (FCN) on top of a CNN based feature map. Here are its inputs and outputs:

o Inputs: CNN Feature Map.

e Outputs: Matrix with 1s on all locations where the pixel belongs to the object and 0s
elsewhere (this is known as a binary mask).



Mask R-CNN — Faster R-CNN + FCN
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Figure 4: The Mask R-CNN framework

In summary Mask R-CNN combines the two networks — Faster R-CNN and FCN in one mega
architecture. Figure 4 shows the conceptual diagram. It adds a branch at output of Faster-RCNN to
output the object mask — a binary mask that indicates if the pixels were in the object bounding box.
This branch is a small FCN applied to each Rol, predicting a segmentation mask in a pixel-to-pixel
manner. Mask R-CNN is simple to implement when the Faster R-CNN framework was given, it very
suitable to our goal of color classification for fashion images and thus we adopted such approach.

5 Experimental results and observations

Figure 5: Examples of test dataset results: pure colors

We generated around 200 images with COCO format boundary annotation as training dataset input,
and iterates 450 rounds generating a good enough weights and hyper-parameters. Figure 5 shows the
examples of color prediction results from test dataset with pure color cloth. We can see Mask R-CNN
approach gives a very satisfied boundary detection of the cloth. The detected color is also satisfied.
Except for black color, all colors return a confidence probability of above 75 percentage, and all
gives more than 55% of confidence of correct color prediction. Figure 6 shows the color prediction
results for non-pure color (e.g., striated, dotted) cloth. Surprisingly it shows good results as well. All
gives corrected/make sense colors based on the background or highlighted colors for non-pure color
clothes. Except for black color, all gives a high confidence of probability in prediction.

Definitely there are some issues need improvements and investigation. In Figure 7, (a) showing the
case when the color between magenta and red, and then it gives 68% of magenta and 49% of red with
multiple boundaries. (b) gives a correct prediction of magenta color cloth but also detected another
boundary of face with pink color, which do not make sense as our purpose only focus on fashion
color. (c) basically did a good job to predict the correct boundary in a multi-color cloth case as it
detects the major color, but it hard to say it should be marked as navy (deep blue) or black. (d) is
not a correct color prediction. We believe it could caused by inconsistent labeling of such color in
training set, may paradoxically labeling as purple, blue or navy at different examples, causing the
training model is confused. Table 1 shows color prediction statistics for each color. We note that the



black color prediction needs improvements in our model, while all others form a good shape. We
think this is because more colors such as navy, magenta and deep purple are easy to confuse black
color. We will consider making a more consistent and standardized labeling of deep colors in our
training set to let the model more easily differentiate out the black with other colors.

Figure 7: Issues of some observations

Color List

color confidence probability accuracy
Black 51% T7%
Blue 91% 100%
Green 85% 94%
Magenta T1% 85%
Navy 73% 86%
Pink 94% 100%
Purple 89% 92%
Red 92% 100%
White 88% 99%
Yellow 88% 98%

Table 1: Prediction statistics for each color

6 Conclusion/Future Work

In this paper, we presented an approach of color prediction for fashion images using the Mask
R-CNN technique, which can provides pixel level of instance segmentation of images. All previous
classification works through convolutional neural network (CNN) and including Mask R-CNN are all
focused on types of objects. This is the first experiment for classifying color of objects by CNN as
far as we know. It makes satisfied and expected results. There are some issues need improvements
for particular colors, we think giving a consistent labeling for various colors in training dataset is
important to improve the prediction performance. We will be more cautious on color labelling and in
future we could investigate the best hyper-parameters, weights and iteration loops for different sizes
of training set to achieve the optimized performances.
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