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1 Introduction

The use of deep learning has become increasingly popular in current biomedical science circles with
the recent surge in availability of many types of medical data. One of the most popular machine
learning fields within healthcare is computer vision, an area that has achieved success across a variety
of datasets and usages. Chest x-rays are the most common type of radiology exam in the world!,
but diagnosing one of the possible chest afflictions to the many organs and systems in the chest is a
difficult task. The NIH Chest X-ray Dataset?, released in 2017, is one of the largest publicly available
X-ray datasets, and has spawned a number of models to predict disease from the x-rays. Most of
these models, including the famous CheXNet?, are implemented to predict the binary classification

of the presence of each disease.
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Figure 1: Four examples from the dataset, from "Comparison of Deep Learning Approaches for
Multi-Label Chest X-Ray Classification”

However, this project is focused not ultimately on the classification, but also on the localization of
the disease. Approximately 1% of images in the dataset have their disease localization described
by bounding boxes. The approach of this project was to train a multi-class classification model on
the training and validation set, optimizing for the mean AUC over all classes. Then, I obtained the
images’ class activation maps using Grad-CAM++, an extension of Grad-CAM, and converted the
maps to bounding boxes. Lastly, I evaluated the results with intersection-over-union and other metrics.
Overall, I believe the model is useful as a diagnostic tool for doctors and other medical professionals
who could diagnose and locate diseases of the chest from a single chest x-ray.

2 Data

The NIH Chest X-ray Dataset is comprised of 112,120 X-ray images with disease labels from
30,805 unique patients; each of the images has a label describing one of 14 diseases (atelectasis,
consolidation, infiltrate, pneumothorax, edema, emphysema, fibrosis, effusion, pneumonia, pleural
thickening, cardiomegaly, nodule, mass, and hernia), or the absence of disease. Multiple diseases
can be present in one x-ray. Of the images with listed bounding boxes, only eight of the diseases



(atelectasis, cardiomegaly, effusion, infiltrate, mass, nodule, pneumonia, and pneumothorax) are
represented.

One large problem is that the dataset is quite imbalanced, with most images containing no disease
and far less than a thousand examples for the least frequent classes. Because the images that have
bounding boxes in the dataset represent only eight classes, this project only deals with these eight
classes (atelectasis, cardiomegaly, effusion, infiltrate, mass, nodule, pneumonia, and pneumothorax).
These eight categories are actually the original eight represented in the dataset, before examples
featuring the last six categories were added to the dataset later. This also means that a weighted loss
by class is likely optimal to try to mitigate the effects of a class imbalance.

The chief caveat of the dataset is that the class labels are not recorded by a medical professional;
rather, they are gleaned using NLP techniques from their corresponding radiology reports, which are
not released due to privacy concerns. Thus, the dataset creators believe their labels to be around 90%
accurate.

However, the labels might be more problematic than that. According to Luke Oakden-Rayner,
a radiologist, the labels are highly inconsistent*, with more inaccuracy than the dataset authors
hypothesize. Furthermore, there are structured inconsistencies throughout the dataset that produce
structured noise, which means that obtaining good performance on the test sight might be not
clinically useful at all. However, Oakden-Rayner praises the CheX-Net model®, stating it probably
does predict at expert-level, despite the data’s flaws. Thus, clinically useful results are possible
despite the frequent mislabeling of data.

At least the bounding box data seems legitimate. The 983 images with bounding boxes were labeled
by an expert; although these boxes could be inaccurate, they’re much more likely to be correct than
the NLP-dependent labeling. All of the bounding-box images are part of the test set. Each image is
labeled with a disease and a (X, y, w, h) description, where x and y denote the upper-left corner of the
box, and w and h denote the width and height of the box.

3 Approach

The approach can be divided into four steps. The first step is to pre-process the data. Second, a
classifier was trained on the eight classes using the training and validation dataset. Next, Gradient-
weighted Class Activation Mapping ++ (Grad-CAM++)® was used to obtain activation maps on the
test images with bounding boxes. Lastly, the best bounding boxes given the class activation maps
were found, and their success was evaluated by comparing them to the ground truth.

The first step is data pre-processing. I borrowed heavily from T.H. Tang’s public code on processing
the data, though I additionally processed test data as well. As mentioned earlier, only the eight
categories represented among the bounding-box images were used. The original dataset had a train-
validation and test split, so I split the train and validation set via a 90-10 ratio. There is no patient
overlap between the sets. I resized every image from a 1024 by 1024 image to a 256 by 256 image
for efficiency, and stored them in numpy arrays to be reloaded later. This step is crucial to reduce
run-time while training.

The second step was training a classifier. This is also based on T.H. Tang’s code, but with some
major changes. I first handled data augmentation, a common technique for increasing the training set
size; a random crop and random horizontal flip were implemented on every training image. With
these augmentations, I decided to increase the training set size by a factor of four. For the model, I
used transfer learning like many previous projects in the domain, using ResNet101 and DenseNet121
pre-trained on ImageNet. The only change to these pre-trained models is an added dense layer that
outputs eight logits, one for each class, and a final sigmoid function. Note that I use a sigmoid function
rather than a softmax, since multiple classes can be represented by one image. I also compared a
vanilla loss function with CheXNet’s weighted loss function®, which alters the loss depending on the
prevalence of the class.

The training used Adam optimizer over binary cross-entropy loss for eight epochs, with a learning
rate of 0.0005. Every epoch, I would calculate the AUC scores for each class between the ground
truth and the predicted class of the validation set images. As described in the Experiments section,
the weighted DenseNet121 performed the best, obtaining the best mean AUC over all classes for the
validation set.



I made crucial improvements on T.H. Tang’s code that make gigantic memory savings and speeds
up training. Tang’s code requires SO0GB of RAM, which is simply way too expensive and slow.
This problem was circumvented by saving and loading intermediate memory-intensive arrays and
reworking the data augmentation steps into an infinitely looping dataloader. These optimizations cut
the time it took to complete the data-loading task in more than half, and ensured the training only
uses about 15 GB of memory maximum, which is more efficient by a factor of more than ten.

For the third step, I experimented with both Grad-CAM and Grad-CAM++ as methods for obtaining
the activation map. Though at this step I used both, by the final step, I realized Grad-CAM++ was
clearly superior. Class activation maps are always taken with respect to a class, but selecting only the
class with highest probability for a given image would limit the total information provided, and is
also dangerous with an unbalanced dataset with severe questions about its accuracy. For this project,
every image that has a bounding box is run through the trained model, and if the class probability is
greater than the class’s maximum Youden’s index on the validation set, the class activation map is
produced and saved for the last step. Youden’s index optimizes for sensitivity and specificity, so any
probability higher than the Youden’s index should be a likely class. This way, there can be multiple
activation maps for the bounding box step, even if some of them are not corresponding to the same
class as the image. Both the Grad-CAM and Grad-CAM++ activation maps were saved. Adapting
the Grad-CAM++ implementation for this project was done entirely by me.

Lastly, I needed to derive one bounding box per image, as per the bounding box data in the dataset.
I realized that since the goal of the project is to assist medical professionals with reading x-rays,
larger bounding boxes should be more acceptable than small ones: as long as the bounding box
contains the disease, doctors should be able to find the disease within it. This would lead to lower
intersection-over-union scores, but in practice just as useful. To obtain the bounding box, [ used a
threshold of the mean of the activations multiplied by a hyperparameter ¢. The class activation map’s
pixels that are above the threshold are divided into various rectangles using the scipy package. Lastly,
the largest connected rectangle over all the class activation maps assigned to an image is found and
converted to bounding box coordinates. I implemented this all myself, while adding extra methods
to visualize the class activation map, the class activation map over the original image, the bounding
boxes over the original image, and more visualization techniques.

I based the first two steps of my code on T.H. Tang’s repository on Github’, which implements
the CheX-Net model. I used WonKwang Lee’s repository on Github® for his implementation of
Grad-CAM++.

4 Experiments

The immediate results of training were promising. I found that DenseNet121 did marginally better
than ResNet101, and was much faster as well. The best ResNet model had an average AUROC across
eight classes in the validation set of 0.766, and each individual AUROC was above 0.60. Over the
test set, the average AUROC across the eight classes was 0.739, and all individual AUROC’s were
over 0.57. However, the best DenseNet model had an average AUROC of 0.779 on validation, and
0.758 on test. When limiting the test set to the images with bounding-boxes, the average AUROC
is 0.784, which is quite high. I expect the images given bounding boxes are intentionally easier to
classify and localize.

One problem seen during training is with each epoch, the binary cross-entropy loss would decrease,
but the AUC would sometimes increase, thus making the best-performing model occur within the
first few epochs. My hypothesis was that the unbalanced nature of the dataset causes this standard
loss function to not do as well. So, I used the weighting function for the loss from the CheX-Net
paper?, and found some marginal improvement. Thus, the best model was weighted-loss version of
DenseNet121.

The next step was to get class activation maps with Grad-CAM++. Figure 2 shows five activation
maps: a is the only activation map for image 250, an instance of cardiomegaly, a class our model
is good at recognizing. The class activation map does in fact correspond with cardiomegaly. B and
¢ correspond to image 607, which is an instance of mass, with b corresponding to the nodule class
activation map and ¢ with the mass class activation map. D and e correspond to image 932, which is
an instance of pneumothorax, with d corresponding to the atelectasis class activation map and e with
the pneumonia class activation map.
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Figure 2: Class activation maps overlaid over original image. a is of an instance of cardiomegaly, b
and c are of an instance of mass, and d and e are of an instance of pneumothorax

Then, I found the largest bounding box among all the class activation maps associated with the image
above a certain threshold ¢. The three metrics of success used are the following:

e intersection-over-union (IoU), the most common bounding-box metric, measures the inter-
section of two bounding boxes and divides that by the union of the two bounding boxes.

e containment measures whether one of the bounding boxes completely contains the other.
Since the predicted bounding boxes will likely be large, this is an important metric.

e non-overlap describes when neither boxes overlap with each other (and have an IoU of zero).
These are clear failures.

Varying ¢ had great effects on these three metrics. Simply, as ¢ increases, the size of the bounding
boxes decreased, so the average IoU increases, but containment decreases and non-overlap increases.
Because I would rather use a larger bounding-box, I chose a higher than average threshold, and set it
at 1.95.

The final Grad-CAM-++ results state an average IoU of 0.201, with a 19.3% non-overlap rate and a
35.4% containment rate. It clearly outperforms a Grad-CAM implementation, which has an average
IoU of 0.186, a 21.4% non-overlap rate and a 32.8% containment rate.

Figure 3: Ground truth (blue) and prediction (red) bounding boxes overlaid over original image. a is
of an instance of cardiomegaly, b is of an instance of mass, and c is of an instance of pneumothorax

Looking at the heatmaps shown in Figure 2, a, the instance of cardiomegaly, has bounding boxes
predicted almost perfectly correctly by the model in Figure 3. There was only one class activation



map to choose from, and it was the one corresponding to the cardiomegaly class. For b and ¢ in
Figure 2, which correspond to an instance of mass, the model chose the bigger heatmap, which ended
up corresponding to the correct class as well. Even though the predicted bounding box is acceptable,
the strange shape of the ground truth makes it difficult to predict well. For d and e, an instance of
pneumothorax, neither of the class activation maps correspond to the correct class (they correspond
to atelectasis and pneumonia, respectively), so the prediction is very wrong. This would be a case of
non-overlap.

The success of the model is very dependent on the class of the image. Figure 4 shows the total number
of images in the bounding-box test set per class, as well as the IoU, non-overlap, and containment
values.

Atelectasis | Cardiomegaly | Effusion | Infiltrate | Mass | Nodule | Pneumonia | Pneumothorax
Test Images | 180 146 153 123 85 79 120 98
IoU 0.102 0.534 0.174 0.227 0.124]0.013 | 0.232 0.083
Non-overlap | 0.194 0.007 0.222 0.114 0.165] 0.443 | 0.100 0.459
Containment | 0.538 0.055 0.261 0.398 0.612]0.443 | 0.375 0.224

Figure 4: Number of images and average IoU, non-overlap, and containment values per class

There are many interesting phenomena to note here. There seems to be no relationship between
IoU, non-overlap, and containment between classes; each class can be quite unique in its properties.
The model is strong at classifying and localizing cardiomegaly: it’s the class with the highest AUC
for classification, and it completely misses only one of 146 cases, with a strong IoU. This is likely
because cardiomegaly is a case of a large heart, which is easy to locate and is likely to be fit with a
large bounding box. Regardless, these results are quite amazing.

However, the class with the worst classification AUC, infiltrate, does a little above average here. This
means that success with bounding boxes is dependent not only on model’s strength, but the size,
shape, and location of the bounding box. Luckily enough, pulmonary infiltrate is a simple buildup in
the lungs, so bounding boxes are quite large, and always central to the lungs.

Meanwhile, the two classes that perform the worst, nodule and pneumothorax, have extremely small
bounding boxes with great variety of placements in the image. Nodules are usually less than three
centimeters in width, so their ground-truth bounding boxes are tiny in comparison with the other
classes. They also can appear anywhere in the lungs. Pneumothorax is a collapsed lung, so their
bounding boxes appear anywhere on the circumference of the lung, which is a wide range. Its
bounding boxes can also be very small.

The variety in size, shape, and location of the bounding boxes makes localization difficult. My
bounding box algorithm currently suggests larger bounding boxes that are more central (boxes
towards the edges simply have a smaller chance of being large). This works well for some classes,
but not others.

5 Conclusion

For this project, I was able to train a model for both classification and localization, dealing with an
unbalanced dataset, clear data inaccuracies, and no bounding boxes to train with. The model classified
decently with a strong AUC, and was able to localize many of the classes, such as cardiomegaly and
infiltrate, well. For most classes, my choice of larger bounding box seems to work well to indicate
the region of disease.

Some adjustments to improve the model would be redoing it with a different train-validation split:
because of the data imbalance, different splits can affect the model greatly. We also could have
trained with a smaller training rate (or with learning rate decay) to try to pinpoint the model with the
best validation, since the best model usually appeared in the first couple epochs.

For stronger classification, a more accurate dataset is a must; as it is currently, there’s only so much
that can be learned when we do not trust the labels. If our model was very accurate with respect to
classification, then we could use prior knowledge about the classes to improve our bounding boxes;
for example, we’d know if we are using a nodule class activation map to use a very small bounding
box. This would fix the problem of weirdly-shaped bounding boxes, and would be a logical next step.



6 Contributions

Hugo Kitano is responsible for the entire paper and code represented here. His code can be found
at https://github.com/hugokitano/cs230_cs271project. This project is shared between
CS230 and CS271; both project reports can be found there.
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