) (CS230

Learning Power Flow Mappings for Power Grid
Simulation

Lily Buechler
Department of Mechanical Engineering
Stanford University
ebuech@stanford.edu

1 Introduction

Power system simulation engines are essential tools for power grid operation and planning by
utility companies and academic researchers. However, simulations can be computationally expensive
given the wide range of timescales of grid operation. Additionally, the accuracy of utility distribution
system models has traditionally been limited, although operational data is now becoming more
abundant. The objective of this project is to develop a deep learning framework for approximating
the outputs from a power flow simulation, and evaluate performance for a variety of power network
characteristics. This model could be used for: (1) accelerating simulation speed when trained on
the outputs from a traditional power flow solver, or (2) improving network model accuracy when
trained on real operational data. These methods would be particularly useful in applications requiring
real-time simulation or optimization.

The purpose of a power flow solver is to perform the inverse power flow mapping. That is, given
the real and reactive power injections at each bus (node) in the power network and the admittance
matrix of the system, solve for the magnitude and phase of the voltage at each bus in the network. For
a deep learning model, the output is a vector of the voltage magnitudes for every bus and phase, and
the input is a feature vector composed of the real and reactive power injections at nominal voltage
for each bus and phase. We also investigate how incorporating other types of network information
improves model accuracy.

2 Related work

The type of power flow simulation under consideration is a quasi-static timeseries (QSTS)
simulation, which uses the Newton Raphson method to solve the static nonlinear power flow equations
(). Power flow solutions must be performed chronologically which prevents sequential solutions from
being parallelized. Literature has investigated methods for accelerating power flow simulations (2} 3}
45155 16), including using machine or deep learning methods to approximate the powerflow mapping
(7;16). These studies have focused primarily on linear regression (6), SVR (7)), multilayer perceptron
neural networks (8), and radial basis function neural networks (9). The deep learning approaches focus
entirely on fully-connected architectures and typically use the second-order Levenberg-Marguardt
method for training (9; 8). Some studies train a different neural network for each node in the system.
Most prior studies have focused on relatively small power systems and assume that no information
is available on power system topology. In this study, we test methods on a range of power system
sizes to evaluate model scalability and demonstrate that performance can be improved by utilizing
additional information about the phase of the power injections.

3 Dataset and Features

The datasets used for this study are the input and output data from a physics-based power
flow simulator GridLAB-D (10). Datasets were generated for six different power networks (L15;12)
under a variety of loading conditions. The input and output dimensions of the power networks are
shown in Table [T} Sixty-one days of simulation was performed at a 1-minute timestep for each

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Table 1: Input and output dimensions of the evaluated power flow problems.

Power Network Output (voltage) dimension | Input (power) dimension
IEEE 4 bus 12 3
IEEE 13 bus 48 20
IEEE 123 bus 402 95
PNNL GC-12.47-1 108 9
PNNL R1-12.47-3 297 37
PNNL R2-12.47-2 2553 214

network scenario (87,840 samples) to generate training (82,080 samples), validation (2,880 samples),
and test (2,880 samples) sets, which come from roughly the same distribution. For simplicity, we
assume that the power factor is constant over time, so that real and reactive power injections are
proportional. Therefore only the real power injections at each node are used as features. Both the
inputs and outputs were normalized to have zero mean and unit variance. For most networks, the
power-voltage relationship is fairly linear for low loading conditions, and highly nonlinear for high
loading conditions. When generating datasets, the power injections were calibrated such that the
power network voltages were in both the linear and nonlinear regimes. The adjacency matrix of the
network and the phase of each power injection was also recorded.

4 Methods

Current literature on using neural networks for power flow approximation has been limited to
single-layer fully-connected architectures (9:|8). Therefore, we use a fully-connected architecture as
a baseline model and perform hyperparameter tuning to optimize the number of layers, amount of L2
regularization, type of activation (tanh and ReLU), and number of hidden units. The dimension of
the input layer (n,) is equal to the number of power injections and the dimension of the output layer
(ny) is equal to the number of power network buses times the number of phases, as shown in Fig.
for a single hidden layer. Therefore a single neural network is used to predict all of the voltage
outputs at all nodes, unlike previous studies that train separate models for each node, which is very
computationally expensive for large networks. A mean squared error loss was used for model training
using Adam optimization (o = 0.001, 51 = 0.9, B2 = 0.999). Since power flow mappings tend to be
fairly linear in the low loading regime, linear regression was also used as a baseline model.

Fully-connected architectures do not account for the sparsity of the topology of the power
network. While utilities may have limited knowledge of power network parameters, the network
topology is more likely to be known. Convolutional graph neural networks make use of network
sparsity and extend the convolution operation traditionally applied in the Euclidean domain to graph
structured data (13)). We investigated the use of graph convolutional networks (GCNs) proposed in
(14)) for this application. However the model resulted in poor performance, which can be attributed
to two main factors. First, the voltage outputs depend on the power injections at all nodes in the
network. Since graph convolution operations aggregate feature information only from neighboring
nodes, this requires extremely deep neural networks to propagate information through large power
networks. Second, graph convolutions assume parameters can be shared among nodes, while in
reality, power flow is spatially dependent since branch impedances can vary significantly throughout
the network. Prediction errors of the GCN model were more than an order of magnitude larger
than all other models and therefore have not been included in the results section. While other types
of graph convolutional networks might work well for this problem, this project focused on other
approaches.

Modern power systems have three phases of sinusoidal alternating current distribution, where
each phase is offset by approximately 120°. QSTS simulation assumes that the power injections may
be unbalanced among the three phases. Therefore, the voltage magnitude depends not only on the
location and magnitude of the power injections but also the phase to which the load is connected. We
incorporate knowledge about which phase each power injection is connected to into the model to
analyze the effect on prediction accuracy. This is done by formatting the power injection features
into three channels corresponding to the three different phases. A sequence of convolutional and
fully-connected layers is used to transform these features, as shown in Fig[Ib. The input dimensions
of the different channels may be different depending on the number of power injections connected to
each phase. Note that in the more general case where reactive power is included as a feature, the filter

b)

J

ny Ty
—K1x3 (?xixs

(a)

L=1

1x1
FC conv
FC FC MSE
loss =
SO (x1x3)

Linear output

MSE
loss

Flatten FC
(".x X1x1))

(e, % 1% 1) (ny x1x1)

(np X 1x 1) (ny, x1x1)

Figure 1: Model architectures for the (a) fully connected and (b) convolutional models.

dimension would be 1x2 and the second dimension of the input layer and first hidden layer would be
equal to 2. Adam optimization was used for training (o« = 0.001, 51 = 0.9, B2 = 0.999) and both
tanh and ReLLU activations were evaluated.

The fully-connected, convolutional, and GCN models were implemented using the Tensorflow
(15) and Keras (16) deep learning frameworks on an AWS EC2 instance. The Scikit-Learn package
(1'7) was used for data pre-processing and learning the linear regression model.

5 Results and Discussion

For a single voltage magnitude output vector V), the performance is evaluated in terms of the
normalized voltage magnitude error egf):
V@O _y©
140}

¥ =

()]

The max norm is used to consider the least accurate prediction for all nodes in the power
network. The mean value over m examples is given by:
1S~ 6
€y — v 2
fey = — Z; ¢ &)
Fig. [2|shows the mean normalized voltage prediction error (., on the validation set as a function
of the size of the training set for the single layer fully-connected network, linear regression, and the
convolutional model. Each model was trained for 500 epochs, which was more than sufficient to fully
minimize the loss function. Increasing the number of layers in the fully-connected network did not
significantly improve performance. The best performance was achieved with a small amount of L2
regularization (o = le-6) for the fully-connected network and no regularization for the convolutional
model.

In all power networks except for the IEEE 4 bus network, the convolutional model performs as
well as or better than the fully-connected network. This demonstrates that the additional structure
provided by the convolutions allows the model to learn the dependencies across phases. The relative
performance of the fully-connected and convolutional models for tanh and ReLU activations depends
on the power network and the amount of training data available. However the tanh activation tends to
most reliably produce the most accurate results across a variety of networks and operating conditions.
The validation and test errors (i,) for the convolutional model with tanh activation are shown in
Table 2] The errors are similar across the validation and test sets for all models, which is expected
given that the validation and test sets come from the same distribution.

Results indicate that for both the fully-connected and convolutional models, the amount of
required training data scales with the size of the power network. Approximately 10,000 samples are
necessary for the three smaller networks (IEEE 4, IEEE 13, and GC-12.47-1) and 20,000-40,000
samples are required for the three larger networks (IEEE 123, GC-12.47-1, and R2-12.47-2) to
mitigate variance issues. The performance of the linear regression model does not improve with more
than 1,000 samples. The improvement in performance of the fully-connected network over the linear
regression baseline diminishes with the size of the power network, however the performance of the
convolutional model is more scalable.

For the fully-connected model, the effect of the number of units in each layer on the prediction
error for the validation set is shown in Fig. |3|for the six different power networks. As expected, the

|IEEE 4 IEEE 13 IEEE 123

1072
FC NN (L=1) tanh
M 6] —e— FC NN (L=1) relu
Pooegesene o PO A | de
10735 L LR
¥ ot === Conv NN tanh
K 30y -=- Conv NN relu
o
10744 == .———‘—"--_:::::--0
0 10000 20000 30000 40000 O 10000 20000 30000 40000 O 10000 20000 30000 40000
Training samples Training samples Training samples
10-2 GC-12.47-1 R1-12.47-3 R2-12.47-2
10734
3
10—4_

0 10000 20000 30000 40000 O 10000 20000 30000 40000 O 10000 20000 30000 40000
Training samples Training samples Training samples

Figure 2: Prediction error (u.,) on the validation set for linear regression, fully-connected neural
network (FC NN) and convolutional neural network (Conv NN) as a function of the number of
training samples and fully-connected layers. Results are shown for both tanh and ReLU activations.

0.004
—— IEEE 4 —— GC-12.47-1
IEEE13 —— R1-12.47-3
0.003 —— IEEE123 —— R2-12.47-2
4 0.002
o \&
0.000 . : - ‘ ‘ .
0 25 50 75 100 125 150 175 200

Hidden units per laver

Figure 3: Prediction error (u,) for the single layer fully-connected neural network with tanh
activation as a function of the number of units.

optimal number of hidden units scales with both the input and output dimension of the mapping
problem. The R2-12.47-2 network requires at least 200 units, the IEEE 123 bus and R1-12.47-3
networks require a minimum of 100 units, while 20 units is sufficient for the smaller power networks.
Results indicate that the prediction error is less sensitive to the amount of regularization relative to
the other hyperparameters.

The prediction accuracy for all models depends highly on the spatial location in the power
network. As shown in Fig. E|for the IEEE 123 bus network, the prediction error tends to increase
further away from the slack bus (bus 150, bottom left), as the voltage deviation becomes larger and
the power flow equations become more nonlinear. A level of error of y., < 0.0005 is acceptable for
most applications, which can be achieved with the convolutional model for all power networks. An
example timeseries voltage prediction for node 92 phase A in the IEEE 123 bus network is shown in
Fig. [|along with the ground truth data, indicating that they are barely visually distinguishable.

6 Conclusions and Future Work

This study investigated different neural network architectures for approximating the inverse
power flow mapping for three-phase unbalanced power system simulation. Results show that a fully-
connected architecture can produce accurate results for small networks, but performance diminishes
with the size of the power network. Providing additional structure in the model to account for
the phase of the power injections using convolutions improves accuracy for larger networks. the
prediction error is low enough to be useful for various applications in power system simulation.

2370

e A A
2368 (vt b
7 { ¥ N
| 'Y
2366 | i
s i ‘
o 2364 | K
g |
= 2362 | /
5 o
= 4 ’ 11 | ¥
2360 -| & \# f
¥ |
5358 | —— FC NN Prediction
Data Ul
0.0e+00 6.5e-05 23561
S ONEE) =G T . ; : : T
s ° 0 20 10 60 80 100

. o Lo Time (min)
Figure 4: Prediction error ji, (indicated Figure 5: Timeseries prediction of the voltage

by marker size) for each phase (a=blue, b=red, magnitude for bus 92 phase A in the IEEE 123
c=green) in the IEEE 123 bus network for a fully-

. network using a single layer fully-connected neural
connected single layer neural network.

network.

Table 2: Validation and test error (g,) for the convolutional model with tanh activation using 21,600
samples for training.

Power Network Validation error | Test error
IEEE 4 bus 1.103e-4 1.027e-4
IEEE 13 bus 1.771e-4 1.718e-4
IEEE 123 bus 9.552e-5 9.936e-5
PNNL R1-12.47-3 2.684e-4 2.586e-4
PNNL R2-12.47-2 4.627e-4 4.775e-4

Future work may investigate formulating the neural network inputs and outputs as complex-
valued quantities. While prediction of the voltage magnitude and phase can be performed by separate
neural networks, the problem is more naturally formulated in the complex domain.

Additional research is needed to determine how to best incorporate different power system
controllers, such as voltage regulators and capacitor banks, into a neural net architecture. Accounting
for these resources is necessary to perform more complicated types of power grid simulation analysis.
The control variable for a voltage regulator is an integer value which indicates its tap changer setting.
This information could be used as a feature using a one-hot encoding or the scalar value. The on/off
status of a capacitor bank could be encoded as a boolean variable.

The analysis in this project assumed that the topology of the power system is static. However in
actual systems, the topology can change due to switches being opened and closed. These topology
changes affect the underlying dynamics of the system. Additional research could analyze the best
approach to dealing with these changes in the neural network model. While it may be necessary to
train entirely different neural networks for each configuration, it may be possible to retrain only a
subset of the weights for each topology.

7 Contributions

Lily Buechler worked independently on this project.

8 Acknowledgements

Thank you to David Chassin at SLAC National Accelerator Laboratory for feedback on using
the GridLAB-D power system simulator and suggestions on the modeling strategy.

9 Code

Code for this project is available at https://github.com/ebuech/cs230

References

(1]

(2]

[3

—

(4]

(5

—

[6

—_

(7]

(8]

[9

—

(10]

(11]

[12]

[13]

[14]

(15]

(16]
(17]

J. Deboever, X. Zhang, M. J. Reno, R. J. Broderick, S. Grijalva, and F. Therrien, “Challenges in reducing
the computational time of gsts simulations for distribution system analysis,” SAND2017-5743, Albuquerque,
NM, 2017.

Z. K. Pecenak, V. R. Disfani, M. J. Reno, and J. Kleissl, “Multiphase distribution feeder reduction,” IEEE
Transactions on Power Systems, vol. 33, no. 2, pp. 1320-1328, 2017.

D. Montenegro, R. C. Dugan, and M. J. Reno, “Open source tools for high performance quasi-static-time-
series simulation using parallel processing,” in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC).
IEEE, 2017, pp. 3055-3060.

M. J. Reno and R. J. Broderick, “Predetermined time-step solver for rapid quasi-static time series (gsts)
of distribution systems,” in 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies
Conference (ISGT). 1EEE, 2017, pp. 1-5.

J. Deboever, S. Grijalva, M. J. Reno, and R. J. Broderick, “Fast quasi-static time-series (gsts) for yearlong
pv impact studies using vector quantization,” Solar Energy, vol. 159, pp. 538-547, 2018.

S. Powell, A. Ivanova, and D. Chassin, “Fast solutions in power system simulation through coupling with
data-driven power flow models for voltage estimation,” arXiv preprint arXiv:2001.01714, 2020.

J. Yu, Y. Weng, and R. Rajagopal, “Robust mapping rule estimation for power flow analysis in distribution
grids,” in 2017 North American Power Symposium (NAPS). 1EEE, 2017, pp. 1-6.

H. H. Muller, M. J. Rider, C. A. Castro, and V. L. Paucar, “Power flow model based on artificial neural
networks,” in 2005 IEEE Russia Power Tech. 1EEE, 2005, pp. 1-6.

A. Karami and M. Mohammadi, ‘“Radial basis function neural network for power system load-flow,”
International Journal of Electrical Power & Energy Systems, vol. 30, no. 1, pp. 60-66, 2008.

D. P. Chassin, K. Schneider, and C. Gerkensmeyer, “Gridlab-d: An open-source power systems modeling
and simulation environment,” in 2008 IEEE/PES Transmission and Distribution Conference and Exposition.
IEEE, 2008, pp. 1-5.

W. H. Kersting, “Radial distribution test feeders,” IEEE Transactions on Power Systems, vol. 6, no. 3, pp.
975-985, 1991.

K. P. Schneider, Y. Chen, D. P. Chassin, R. G. Pratt, D. W. Engel, and S. E. Thompson, “Modern grid
initiative distribution taxonomy final report,” Pacific Northwest National Lab.(PNNL), Richland, WA
(United States), Tech. Rep., 2008.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural
networks,” arXiv preprint arXiv:1901.00596, 2019.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv
preprint arXiv:1609.02907, 2016.

M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

E. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830,
2011.

https://www.tensorflow.org/
https://github.com/fchollet/keras

	Introduction
	Related work
	Dataset and Features
	 Methods
	Results and Discussion
	Conclusions and Future Work
	Contributions
	Acknowledgements
	Code

