
Predicting Hierarchical Relationship in Job Title Taxonomy

Shuang Jin
sjin1@stanford.edu

March 14, 2020

Abstract

Job title taxonomy is a digital representation of the job market knowledge. It is used in job search
engines to unite and organize the global workforce. However, building a well-structured taxonomy is
non-trivial. In this project, we create a classification model to predict the synonymy and hypernymy
relationships between title entities to construct a complex hierarchical structure so that it helps taxonomy
team to find parent and child taxa for each taxon, and place a new taxon to the proper branch.

Keywords: job taxonomy, LinkedIn, hierarchical structure

1 Introduction

In the modern era, employment-related search engine sites are an important economic driver. It has
revolved the job market by connecting job seekers and talent acquirers to each other. Job seekers make
online queries for openings with titles matching their professional interest, recruiters query for people with
titles matching their hiring positions and the search engine sites also use user profiles to recommend jobs
with titles matching their career track. This clearly shows the importance for search engines to understand
job titles so to compute the best matching results in all the scenarios, and a common practice is to construct
a job title taxonomy[1].

However, building a taxonomy to reflect the status quo of the job market reality is a hugely complex task
that takes years of effort from a group of highly trained taxonomists. It not only requires collecting all the
job title entities, but more importantly, building a hierarchical structure that provides paths that link the
entities to each other.

The recent advances in Deep Learning can be used to accelerate such taxonomy tasks. Our project
proposes a framework that detects the entity-to-entity relationship based on their lexical meaning and their
usage among professionals and recruiters. We decode the entities’ textual meanings using ELMo embeddings
and also collect key metrics that observe the trend of how people use them. The model is trained on a dataset
of job title entity pairs (Source Term xsource and Target Term xtarget)

i and their relationship labels (y). It
performs a multiclass classification task that predicts one of the C = 4 classes:

1. Broader Term: the target term xtarget is a broader concept than the source term xsource. On the
taxonomy graph, xtarget is an ancestor of xsource.

2. Narrower Term: the target term xtarget is a narrower concept than the source term xsource. On the
taxonomy graph, xtarget is a descendant of xsource.

3. Preferred Term: the target term xtarget is the same concept as the source term xsource, but is
deemed as a more appropriate way of expressing the concept. On the taxonomy graph, xtarget and
xsource reside in the same taxon (node).

iThe input pairs are ordered. This is to say that if the source term is xsource and the target term is xtarget, the label output
can be different.

1



4. Non-Preferred Term: the target term xtarget is the same concept as the source term xsource, but
is deemed as a less appropriate way of expressing the concept. On the taxonomy graph, xtarget and
xsource reside in the same taxon (node).

5. Unknown: the target term xtarget does not have the above relationship to xsource.

2 Mathematical Objective

The standard cost function for a multiclass problem with m samples and C classes of labels is as in 1,
where y is the ground truth and ŷ is the prediction:

J = − 1

m

m∑
i=1

C∑
j=1

yij · log ŷij (1)

However, there is a data imbalance problem that we have a lot more training data with the label Other,
while the performance of our model depends on how well it predicts all four labels. The skewed distribution
makes it more difficult for the model to learn how to classify the minority classes. Therefore we use Cost-
sensitive Learning that penalizes misclassifications of the minority classes more heavily than the majority
classes with a class weight λj for the j-th class as shown in 2:

J = − 1

m

m∑
i=1

C∑
j=1

λj · yij · log ŷij (2)

As the class size increases, the weight decreases. The product of each class’s distribution and class weight
is equivalent, so our cost function is overall equally sensitive to all classes.

Class Sample Size Class Weight
Broader Term 100K 1
Narrower Term 100K 1
Preferred Term 20K 5

Non-Preferred Term 20K 5
Unknown 60K 2

Table 1: Data Distribution vs. Class Weight

3 Data

The taxonomy data already has a structure that indicates pair relationship. We processed the taxonomy
to form a three-column data for this project: source term, target term, label2. There are 290K samples in
the training set (93%), 19K in the dev set (6%) and 3K in the test set (1%). Before the modeling, the data
is preprocessed in the following steps.

1. Normalization - removes trailing or double spaces and convert all words to lowercase.

2. Spellchecking - removes any data with spelling mistakes.

3. Tokenization - converts words to unique tokens (integers).

4. Padding - left pads with all zeros to convert all sequences to the same length as in Table 3.

After the preprocessing, the input layer has the shape of (N, 14) where N is the total number of samples
and 14 is the concatenated sequence length.

2



Source Target Label
Professor Professor of mathematics Narrower Term

Compensation specialist Human capital Broader Term
Information system security engineer Information systems security engineer Non-Preferred Term
In vitro fertilization registered nurse Fertility nurse Preferred Term

Account manager radiology Sssistant researcher Unknown

Table 2: Three-column Raw Data

Before After
head of strategic initiatives 0 0 0 0 3 5 115 394

sales staff 0 0 0 0 0 0 0 2 57

Table 3: Tokenizing and Padding

4 Project Models

4.1 Base Model

The base model is a simple neural network with two layers. The first hidden layer is an 16-dimension
embedding layer that encodes. The (N, 16, 16) embedding layer is then flattened into (N, 256). as the input
of the second and final softmax layer. The model reaches 81% accuracy in validation set after 40 epochs,
and then fluctuates around that accuracy level, with an increasing gap between the train and validation set.

4.2 Simple LSTM 64d and 128d Models

Compared to the Base Model, the Simple LSTM Models add a LSTM layer [2] of 64d and 128d respectively
between the embedding and the softmax layer. The two LSTM layer dimensions are not too different in terms
of their performances, but the added LSTM layer is a huge performance boost. Both reach 95% accuracy.

4.3 Simple Glove Model

Compared to the Base Model, the Simple Glove model replaces the self-trained embedding in the base
model with the Glove 100-dimension embedding [3] (glove.6B.100d.txt). Originally, this model is anticipated
to outperform the Base Model, but it turns out to have very similar performance and only has a 1% accuracy
improvement.

4.4 Glove LSTM 64d and 128d Models

The Glove LSTM Models combine the Simple LSTM and Simple Glove model by applying the 100d Glove
embedding followed by a 64d/128d LSTM layer. These models have the best performance across by reaching
a 97% accuracy in the validation set. Similar to the Simlar LSTM Models, the 64d and 128d do not make
much of a difference.

3



5 Observations and Analysis

5.1 Spelling errors in data

At first, the models using Glove embeddings are significantly outperformed by models with self-trained
embeddings. After some investigations, I found that this is caused by spelling errors - in the raw data,
about 50% of the data contains at least one spelling error. Since Glove does not recognize those spelling
mistakes, the embedding layer assigned zeros to them. As job titles are usually short, these zeros have a
considerate negative impact on the training. Another compound is probably the feature of the training data
- the training set has 3550 unique words. Each word appears an average of 461 times in the entire set, with
the top words appearing over 10K times. This indicates that the self-trained embeddings are likely to have
an acceptable performance, as many words have a high repetition rate.

5.2 Model Tuning

In this project, there are two hyperparameters that have major impacts on the model performances: class
weight (for loss calculation) and learning rate.

Initially, the class weights were not set as in 1. From the error analysis, we identified the trend where
classes with less samples have much worse performance, so they were adjusted accordingly as shown in 2
with class weights in Table 1.

As for the learning rate, when it was set too high, the validation accuracy has large fluctuations without
further improvement after a small number of epochs (very fast to learn but fails to converge). When set
too low, it takes a much longer time to train. This is an expected behavior. Taking the Base Model as an
example, it uses Adagrad optimization algorithm. After just a few manual experiments, I set the learning
rate range to be between 0.01 and 0.1. Then I randomly sampled in this range and found out that when
set at 0.03, it takes just 20 epochs to train, and converges fairly well. It is worth noting that the learning
rate in this problem plays a more important role than regularization, as adding regularization term hardly
reduces the variance, compared to a lowering the learning rate.

5.3 Model Comparison and Selection

Comparing all models’ output, it shows that those with LSTM layer outperform those without LSTM
layer by a large margin. Between the simple LSTM Models and Glove LSTM Models, Glove LSTM Models
have the best performance in almost all categories and is a clear winner. The 64d and 128d Glove LSTM
models are very similar with 64d being slightly more balanced across all labels. Also as the 64d model
has less parameters and is faster to compute, it could have more efficiency gains in a production system.
Therefore, our final selection is the Glove LSTM 64d model.

5.4 Observations and Future Work

Across all models, we observe a similar difficulty ranking among the five classes: PT ≈ NPT > UKN >
BT ≈ NT . A possible explanation of PT and NPT being the easiest is that such relationships can often be

4



Model BT NT NPT PT UKN Precision Recall F1 Score

BT 873 12 16 14 38 91.61% 94.38% 92.97%
NT 6 1011 16 17 32 93.44% 93.61% 93.52%

Base NPT 6 1 151 8 40 73.30% 51.01% 60.16%
PT 3 8 6 155 33 75.61% 50.32% 60.43%

UKN 37 48 107 114 354 53.64% 71.23% 61.19%

BT 925 0 9 7 12 97.06% 98.09% 97.57%
NT 2 1056 2 10 12 97.60% 99.06% 98.32%

LSTM-64d NPT 1 0 190 14 1 92.23% 85.20% 88.58%
PT 0 1 10 192 2 93.66% 81.36% 87.07%

UKN 15 9 12 13 611 92.58% 95.77% 94.14%

BT 934 3 3 2 11 98.01% 97.60% 97.80%
NT 3 1065 1 5 8 98.43% 97.98% 98.20%

LSTM-128d NPT 2 2 180 18 4 87.38% 89.11% 88.24%
PT 2 3 4 193 3 94.15% 84.65% 89.15%

UKN 16 14 14 10 606 91.82% 95.89% 93.81%

BT 871 10 15 21 36 91.40% 94.16% 92.76%
NT 6 1008 18 18 32 93.16% 94.56% 93.85%

Glove NPT 7 1 144 9 45 69.90% 50.00% 58.30%
PT 2 5 6 161 31 78.54% 48.94% 60.30%

UKN 39 42 105 120 354 53.64% 71.08% 61.14%

BT 938 1 5 5 4 98.43% 99.05% 98.74%
NT 0 1069 1 5 7 98.80% 98.71% 98.75%

Glove-LSTM-64d NPT 1 3 188 14 0 91.26% 92.61% 91.93%
PT 0 2 6 195 2 95.12% 85.15% 89.86%

UKN 8 8 3 10 631 95.61% 97.98% 96.78%

BT 939 0 4 4 6 98.53% 98.02% 98.27%
NT 1 1069 0 3 9 98.80% 98.62% 98.71%

Glove-LSTM-128d NPT 0 1 190 11 4 92.23% 93.14% 92.68%
PT 1 2 7 192 3 93.66% 86.49% 89.93%

UKN 17 12 3 12 616 93.33% 96.55% 94.92%

BT = Borader Term
NT = Narrower Term

NPT = Non-Preferred Term
PT = Preferred Term

UKN = Unknown
Highest among all models

Table 4: Model Comparisons

decided from the language features alone. Using well-trained embeddings, machine can achieve this task as
well.

For humans, UKN is often the easiest class among the five, but the models still find it difficult. This
could be caused by the fact that humans are able to utilize a variety of knowledge such as the associated
industries and skills of each class. Therefore, a possible extension is to mine the related entities such as
industries and skills to improve the performance of UKN .

As for PT and NPT , humans also tend to have more troubles making the decision. A common practice
in the human taxonomy team is to refer to the popularity of the terms. For example, if more people use
Term A than Term B in their resumes, it is a strong indicator that A is more preferred. Such features are
missing in this project but should be added in the future.

Another observation is that the labeled data is ”sector-biased” - it has a lot more data in the ”white-
collar” industries. It is worth doing additional analyses to uncover model performance differences in for each
sector and rectify the biases accordingly.

5



References

[1] Mamadou Diaby and Emmanuel Viennet. Taxonomy-based job recommender systems on facebook and
linkedin profiles. 2014 IEEE Eighth International Conference on Research Challenges in Information
Science (RCIS), pages 1–6, 2014.

[2] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM)
network. CoRR, abs/1808.03314, 2018.

[3] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

6


	Introduction
	Mathematical Objective
	Data
	Project Models
	Base Model
	Simple LSTM 64d and 128d Models
	Simple Glove Model
	Glove LSTM 64d and 128d Models

	Observations and Analysis
	Spelling errors in data
	Model Tuning
	Model Comparison and Selection
	Observations and Future Work

	References

