) (CS230

Real-Time Risk Evaluation System for Aviation Safety

Saakaar Bhatnagar(06340885), Nicolas Tragus(06358333)

Abstract

The goal of this work is to create an algorithm capable of evaluating in real-time
the risk of a developing emergency situation in an aircraft and act as a decision
support system by advising the best course of action based on previous similar
situations.

1 Introduction

Even though planes are the safest mode of transportation, mid-air incidents and accidents do occur
and are often sudden and unavoidable; and when a situation develops in flight, that is where a pilot
earns his money by making quick decisions, often in the face of incomplete information. In a crisis,
pilots have to decide between courses of actions that can potentially endanger lives versus courses
that can cause enormous monetary losses, e.g. by diverting to the nearest airport. In light of this, the
current work aims at developing a too that can quickly quantify the risk of a situation in the air, and
can guide pilots to take actions in light of historical data, i.e. what pilots did before similar situations,
and based on previous outcomes, perhaps suggest a best decision.

The raw data used here will consist of reports from The Aviation Safety Reporting System (ASRS),
which collects reports from previous incidents in order to analyze and improve aviation safety. Each
incident has an exhaustive set of data points (X) and results of the incident (Y), that can be used as
training data.

We use a combination of LSTM and fully connected layers to analyze the information given as
categorical strings (almost all data), and a sentiment analysis or word embedding for the narrative
written by the pilots. Then, a combination of dense layers with a softmax activation outputs the
probability for every risk class given the current situation.

2 Related work

The paper "Ensemble machine learning models for aviation incident risk prediction” [1] deals with
the same issue as ours. It uses a hybrid of SVMs and Deep Neural Networks to quantify the risk of a
wide range of hazardous events. This is one of very few papers that exists on the topic.

The narratives are written by pilots often using abbreviations common in the aviation field. This may
be an issue when analysing the narratives, and the paper "Deep learning for extracting word-level
meaning from safety report narratives" [2] tackles this issue.

Our work dffer from those approaches in that we explore several different architectures for risk
quantification from those described above, and our classification is based on a smaller number of
input features deemed more important by domain knowledge. The choice of inputs also makes it
possible to use this tool in real time as opposed to [1].

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)


https://asrs.arc.nasa.gov/search/database.html
https://www.sciencedirect.com/science/article/pii/S0167923618301660
https://ieeexplore.ieee.org/document/7486358
https://ieeexplore.ieee.org/document/7486358

3 Dataset and features

Our dataset is composed of around 55,000 reports from the ASRS, and represents the events that hap-
pened between January 2005 and January 2020 (included) for passenger, personnal, or cargo/freight
aircrafts. It must be noted that the ASRS only contains reports from flights in the USA. A typical
report contains basic information such as time/place/day, or data about the aircraft and onboard crew,
but most importantly a synopsis and a narrative. The former is a quick description of the event, while
the latter is a small report written by the pilot describing what happened. An example of a report can
be found in the main github depository.

We retained five entries to begin with: weather, flight type, flight phase, situation, and crew size, plus
the narrative. After noticing some incoherence in the weather entries, such as numbers, we removed
the weather for some predictions and noticed a slight increase in the performance of our models.
We believe this to be due to bad data in the column. Based on domain knowledge, there is reason
to believe that these are the features that affect the risk levels of a situation the most. However, the
model can be easily adapted to a different number of entries, as the format of the ignored entries is
the same as the entries used here.

The repartition of class is given in table 1. The number of reports can vary as much as 100% from
one class to another, which causes training set imbalance. We will show the effect of this later and
remedy by balancing out class labels.

The data can be decomposed into three types: Categorical strings, integer, and large paragraphs of
text. Almost all the data is given as a string, except for the narrative (text) and the crew size (integer).

Class of risk 0 1 2 3 4
Number of reports | 10709 | 8245 | 17621 | 8220 | 10813
Table 1: Number of reports in each class of risk. Note the predominance of class 2.

3.1 Preprocessing

As the crew size is already an integer, it doesn’t need any preprocessing to be used as an input in the
network.

For the 3 strings left out of our 4 entries, we need to extract them from the reports, and remove
NaN/faulty datapoints that could occur. Then we need to preprocess them to remove punctuation and
uppercase words. Next, we fit tokenizers to every input feature, and get the vocab sizes for that input.
This will be needed to pass to the embedding layers in the network. Finally, due to variable input
sizes for each feature, the largest input size is found for each input feature, and the rest are padded
with zeros to obtain a rectangular input matrix of data. This procedure remains the same across our
network architectures regardless of the method of dealing with the narrative.

The narrative data consists of large paragraphs. As will be described below, we input it to the network
in several different ways, but we also carry out the process of removing punctuation and uppercase
words beforehand.

The output data (Y) used for the training is the result of an event (e.g. aircraft damaged, general
maintenance action, etc...). For it to be understood by the network, we map every output to a level of
risk varying from 0-4 to use as labels. We then convert this to a one-hot encoded variant of the labels,
to enable training using a softmax output.

4 Approach

We take three approaches to the architecture of the network. It is important to keep in mind the three
types of inputs: categorical text, narrative and integer. Our 3 architectures differ mainly in the dealing
of the narrative

1. We calculate a "sentiment score" using a predefined library (Textblob) for the narrative. It is
calculated as 0.9*(optimism calculated) + 0.1*(subjectivity of narrative). This outputs a
float that can later be used as an input for our network. This architecture will henceforth
be referred to as First Network.


https://github.com/Saakaarb/Deep-Learning-Risk-Quantification-for-Aviation-Incidents

Small Network for Demonstration Purposes

Dense
LSTM Reshape Layerand
Input Embedding  Layer Layer BatchNorm
Layer (16 (10 units) Output
Layer it P
— units) Layer{Softmax
Weather: / ACtivation)
Normal | » LSTM [—>
Flight —
(- Pl
slamjr Carrier Sample
np _ i
Figt utputs{ideal)
Phase: | > [ STM [~
Takeoff
stuation:
Altitude | —> LSTM [—»
Deviation

Crew Size s[? ’e""z
and 1Ze:
Narrative | Sample
: Narrative  Inputs
Sentiment Sentiment
Score Score: 0.1

2x1

Figure 1: First network architecture. The architectures of the other two networks are substantially
similar and can be found on the Git.

2. We learn a word embedding for the narrative data, and pass the embedded data to the
LSTM layer further down the network.This architecture will henceforth be referred to
as Second Network.

3. We use a pre-trained word embedding (GLoVE) for the embedding layer of the narrative.
The embeddings for the categorical text inputs remain trainable.This architecture will
henceforth be referred to as Third Network.

Then that data will go through LSTM layers , followed by a reshaping layer and dense layers, and
finally through a softmax activation. For illustration purposes, the architecture of the first network is
given in Figure 1. From the dataset, 90% is used for training and 10% for testing. As we are dealing
with a mutliclass classification problem, we are using a categorical cross entropy loss.

5 Experiments, Observations and Results

Using all three architectures described above, we ran a hyper parameter search , modifying quantities
like learning rate, number of layers (both dense and LSTM), regularization parameter, or number of
hidden units. Some of the pertinent results such as learning curves (Figure 2) and confusion matrices
(Figure 3) are shown below, along with a few important points:

e For the first network, adding regularization did not significantly improve the overfit charac-
teristics. The given learning curve is for A = 10, any higher and the network failed to
smoothly learn training data. Making )\ too high resulted in the network unable to learn.

e For the second and third network, tuning hyper parameters like learning rate, enabled us to
go from a dev set accuracy of 0.35 to 0.5 at best, but no further as visible from the above
plots.



Accuracy

T
Training Accuracy —+—

g T
Dev set Accuracy ——

Accuracy
o
5
T

Training Accuracy ——+—

T T
Dev set Acouracy —<—

Accuracy

Training Accuracy —— |

T
Dev set Accuracy ——

L
200

.
400
Epoch

L L
600 800 1000 0

(a) First Network

Epoch

(b) Second Network

100 0

. .
50 100 150
Epoch

(c) Third Network
z

Figure 2: Training curves for the three networks. In magenta, the training accuracy, and in cyan, the

true Labels

El S5e+02

— 97

N 2.2e+02

Sentiment Analysis

95 3.6e+02 28

3.7e+02 2.1e+02 16

[SSH 1.2¢+03

14 4.6e+02 1.2e+02 1.6e+02

1.5e+02

dev set accuracy

CRCEEIPN 1.1e+02 2.1e+02

- 1000
800 P 1e+02

600

true Labels
2
N
N
®
?
o
N

400

Sentiment Analysis

4e+02 1l.4e+02 61

54 lle+02

- 600

1.6e+02

4.8e+02 1.8e+02 2.2e+02

2.3e+02 3e+02 1.9e+02

200

< i 2.4e+02 38 6.6e+02 < 1.2e+02

0 1 3 4 0 1

2 2
Predicted Labels Predicted Labels

(a) First network before data balance (b) First network after data balance

GLoVE Prediction

- 700

Learnt Embeddings o 1.2e+02 2.6e+02 28

12e+02

EW 556402 1.2e+02 2.9e+02 40 - 700 — 600

—- 95 3.9e+02 1.5e+02 58 1.5e+02

- 600 500

Bl 51 35402 13e402 40 1.9e+02 %
500 G 400
3 Pl 1.5e+02 44 CRERR 1.1e+02 2.1e+02
Bl 1.9 +02 30 1.1e+02 2.5e+02 400 2
E = 300
£
300 - 9 3e402 2.5e+02 18e+02

3.6e+02 1.7e+02 2.2e+02

< 13e+02 50

Predicted Label

Predicted Label

(c) Second network after data balance (d) Third network after data balance

Figure 3: Confusion matrices for our three networks, before and after output balancing. The matrices
using balanced output data are clearly more diagonal

After tuning the hyperparameters, we ran the models and got the confusion matrices for the three
different architectures. We noticed the models tend to predict a middle risk level disproportionately,
and hypothesized that this tendency might be due to the class imbalance present in the data. So we
ran further experiments with a rebalanced dataset of size 49,000 datapoints, where we removed 6,000
points from the second class to bring it at about the same number of reports as the other classes. Here,
data augmentation cannot be used given how the reports are made. In the paper from Zhang and
Mahadevan [1], they approached that issue by multiplying the number of examples from other classes
instead of removing reports. The resulting confusion matrices are shown in Figure 3.

Using the first network for illustration purposes, we see clearly that the networks perform better on
average, over all classes, after the data is made even over output class labels. The next pertinent
question is that of choosing the best algorithm out of all 3. For that, we calculate the recall for each
algorithm, for each categorization. Because this is an application of safety, we want recall for the



high risk categories to be maximised, and hence the algorithm that achieves that is the best one. The

formula for recall for a multi-class classification is Recall= = Fi—
J *J

The calculation of recall for each algorithm, for each category is shown in table 2.

Risk Category | 1stNet | 2nd Net | 3rd Net
0 0.552 0.5 0.503
1 0.467 0.441 0.462
2 0.419 0.498 0.521
3 0.355 0.200 0.311
4 0.668 0.716 0.707
Average 0.492 0.471 0.500

Table 2: Recall for each class and network architecture

From table 2 we see that if we want the network to behave best in dangerous situations, it is best to
prefer the third network, as it performs better overall in the higher risk categories (3 and 4), and has
a higher overall recall. Surprisingly, the first network does a better job than the second one, even
though the second and same network have almost the same architecture. This may be an indicator
that the GLoVE algorithm really is a better fit for our application here. We can see from the above
results that although the matrices are diagonally dominant, they are not as sparse as we would like
them to be (off diagonal terms are larger than we would like). We attribute this to two reasons.

First, the problem is a highly complicated one, and there might be several answers (read risk
categories) to the same set of inputs (read flight conditions/events). This is reflected in the data
collected from the database, and as such the network has a hard time learning the data.

Second, one should also note the human expert level error for the given problem is rather high. Even
in hindsight, aviation experts tend to argue what the risk level of a situation and hence appropriate
action is for a given situation. Although it is difficult to find data on this, the Bayes error can be
considered to be reasonably high.

6 Conclusions and Future Work

The work has the potential to lay the groundwork for a useful system that analyzes risk in real time
of a developing situation, given certain important vitals. Out of the three different architectures we
tested for our model, the GLoVE model for the narrative seems to give the best performance, with a
recall of 0.5. While those numbers may seem very low, one must keep in mind that even for humans,
the data can be hard to classify in hindsight.

Some ways this work can be expanded are:

o If real time flight computer data like engine revolutions, or speed of ascent/descent could be
added to the training data, the algorithm can become much more potent.

e The data downloaded from ASRS tends to be very "dirty", much of it and many of its
columns are not usable. Better data from ASRS will enable training of a better classifier.

e One drawback of the current work is that the narratives the networks have been trained on
tend to be in past tense. However, if the model was in commercial use the pilots would
"speak" to the model in present tense. This has the potential to be overcome by improving
the language processing part of our algorithm, perhaps by using transfer learning from
another application specialized in that.

7 Contributions

Every part of the project was tackled equally by both, with Saakaar helping mostly in designing the
network architectures and extracting, and Nicolas preprocessing the data and writing the report.

The entire code can be found here


https://github.com/Saakaarb/Deep-Learning-Risk-Quantification-for-Aviation-Incidents

References

[1] Xiaoge Zhang, Sankaran Mahadevan,"Ensemble machine learning models for aviation incident
risk prediction”, Decision Support Systems, Volume 116, January 2019, Pages 48-63, ISSN 0167-
9236, https://doi.org/10.1016/j.dss.2018.10.009.

[2] A. Chanen, "Deep learning for extracting word-level meaning from safety report narratives,"
2016 Integrated Communications Navigation and Surveillance (ICNS), Herndon, VA, 2016, pp.
5D2-1-5D2-15.



	Introduction
	Related work
	Dataset and features
	Preprocessing

	Approach
	Experiments, Observations and Results
	Conclusions and Future Work
	Contributions

