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Abstract

Fluorescence microscopy is often limited by the number of distinct channels that
can be simultaneously resolved. This in turn restricts the number of inputs that can
measured, for example, in the same biological system. Here we aim to train a U-Net
based convolutional neural network to predict the location of cellular organelle
from bright-field images, thereby freeing up a "color" that would normally used
for cell segmentation or tracking. We provided labeled masks for nuclear and
cytoplasmic areas automatically generated from fluorescent labeling probes and
trained the model on 1500 images. Our model achieved an F1 score of 0.852
on pixel-level semantic segmentation tasks. Furthermore, when focused on only
being able to predict nuclei, our bright field based segmentation achieved an F1
score of 0.894, and achieved good accuracy when trained on smaller subsets of
full training data. This high performing segmentation is on par with other similar
implementations, and is more than adequate for use in research applications (e.g.
segmentation, tracking, signal quantification).

1 Introduction

Molecular biology and medicine increasingly rely on high-throughput microscopy to understand
the dynamics of complex biological processes. A large repertoire of fluorescent markers have been
developed which can directly report cellular signaling and regulation in single cells over time. Given
the advancement of automated microscopy in which hundreds of thousands of images can be acquired
in a single experiment, computer-based automated image analysis has become increasingly necessary
for biology. A traditional imaging-based pipeline has cells stained with multiple fluorescent markers,
one of which is a fiduciary marker to segment and identify single cells for tracking and further
signal quantification. Researchers are often limited by the number of different fluorescent colors
that can be simultaneously captured, which is further hindered by the need for said segmentation
marker. Some groups have started to overcome this challenge by combining fluorescence imaging
with orthogonal imaging modalities such as brightfield imaging, which can give information on cell
shape and subcellular structure without using molecular probes or taking up a fluorescence channel.
In addition to augmenting fluorescence microscopy experiments, brightfield imaging can be used
alone to track cell movement and proliferation in cells lacking fluorescent markers on relatively
low-cost imaging equipment. Despite these advantages, brightfield imaging and similar techniques
produce low-contrast and complex images, necessitating the use of deep-learning to segment cells in
these experiments (Moen et al). Here we implement a deep learning-based segmentation pipeline
which uses brightfield images to predict sub-cellular organelle location (nuclear and cytoplasm).
We use a U-net CNN architecture for semantic segmentation to predict if each pixel is in one of
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Figure 1: Sample images and matching masks. a) Brightfield images. b) Nuclear stain. ¢) Cytoplasmic
stain. d) Background-nucleus-cytoplasm mask. ) Background-nucleus-boundary-split mask.

three classes: background, nuclear, or cytoplasmic. The algorithm was trained on masks that were
generated using automated pixel-wise ground-truth annotation using gold-standard chemical probes.

2 Related work

Currently, most high through-put single-cell analytical pipelines use automatic thresholding or edge
detection of high-contrast fluorescent markers for segmentation, as brightfield imaging produces
low-contrast and complex images which are not suitable for traditional segmentation methods. Pre-
vious work using U-Net (Ronneberger, Fischer, and Brox) architectures have been very successful
at reconstructing various sub-cellular structure from brightfield imaging. For our particular task of
nuclear segmentation using brightfield, a previous U-Net alone approach has yielded a very high
accuracy (0.89-0.97, F1 0.76-0.86) (Fishman et al.). Using a Deep Neural Net another group was
able to outperform manual ground truth annotation(88% vs 85% of cells were segmented with an
F-score0.6) (Sadanandan et al.). Some groups have moved beyond multi-class segmentation and
have begun using CNN and U-Net architectures to directly predict fluorescent signals based on
non-fluorescence microscopy. In these cases, the output of training is an inferred fluorescent signal
intensity from bright field images (Guo et al.,Ounkomol et al.|Christiansen et al.). While these
methods require less data preprocessing for generating the training set, as no segmentation is required,
for a high prediction-implementation of intensity prediction, more advanced transmitted-light mea-
surements such as quantitative phase-contrastGuo et al.| or differential-interference microscopy are
required. Thus, rather than predicting fluorescence intensity and then segmenting based on predicted
fluorescence values, we favor an end-to-end approach which would take as an input simple brightfield
images and output segmentation maps directly. Furthermore, there has been previous work done on
instance segmentation for label-free cell tracking to identify single cells and their masks (e.g. Mask
R-CNN). However these methods are more intensive computationally, and given the regularity of cell
shapes it is relatively straightforward to identify individual objects using morphological analyses and
transformations from a semantic segmentation map.

3 Dataset and features

We acquired images on an automated ImageXpress Micro microscope, which can acquire brightfield
images together with multi-color fluorescence images in quick succession on 96-well cell culturing
plates. To generate our training set, we simultaneously imaged brightfield images taken at an in-focus
imaging plane and 3 um above and below (Figure 1a), and fluorescence images of nuclear stain
Hoechst 33342 and mitochondrial stain MitoTracker (for identifying cytoplasm) (Figure 1b, 1c). In
total, we acquired 1,920 sites using a 20x (0.75 NA) objective on a digital camera capturing 16-bit
2160x2160 images. The 1920 images were randomly split into training-dev-test sets with a 80-10-10
split (1536-192-192 images). For each set of images, we generated ground truth masks of the nucleus
and cytoplasm though traditional segmentation methods of the fluorescent stains. The two masks
were then flattened with the nuclear mask on top to generate a 3-class pixel-wise classification mask
(background-nucleus-cytoplasm). The resulting masks contained fused cells, where neighboring
cells are not split by boundary pixels. Typically, cell nuclei can be split using concavity-based
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Figure 2: Example images of ground truth (GT) and predictions made by models trained on single-
plane brightfield images

morphological splitting, while cell cytoplasm can be split using a watershed algorithm. However
the cytoplasmic stain is not cleanly separated between neighboring cells and thus we concentrate
on separating cell nuclei, which is sufficient for many experiments. We propose two schemes for
splitting cell nuclei: 1) predicting a background-nucleus-cytoplasm masks with the CNN and then
morphologically splitting masks of touching or nearby nuclei, or 2) morphologically splitting nuclei
in the training mask, creating a new label for the split region (3 pixels wide) as well as a new label
for nuclear boundaries (3 pixels wide). In this alternate labeling scheme, we combine cytoplasm
and background classes, creating a 4-class background-nucleus-boundary-split mask. Thus, our two
segmentation schemes involve either a rough segmentation (background-nucleus-cytoplasm, Figure
1d) which is later cleaned up by object splitting, and a single-step analysis wherein the network
explicitly learns split regions (background-nucleus-boundary-split, Figure le).

4 Methods

To generate semantic segmentation maps we utilize an existing implementation of the U-Net architec-
ture (https://github.com/qubvel/segmentation_models). The U-Net is a fully convolutional network
which is made up of a series of encoding convolutional layers followed by decoding layers which
upsamples the output to the same size as the input. Skip connections between the encoding and
decoding layers allow small-scale information to pass to the output of the network. In this way, a
segmentation map comprised of pixel-wise classifications can be output. To speed up training, we
utilized the convolutional layers of the VGG16 network as the encoder, with weights pretrained on
ImageNet. During training, we randomly crop images to 640x640 (mini-batch size 4) to accommodate
memory limitations, and randomly apply image rotation and reflection and use a hybrid loss function
(Dice loss + focal loss). Efficientnetb4 was trained using input images of 320x320 (minibatch size 8).
Dev and test set evaluation was performed on whole images.

5 Results and discussion

We first trained models on ground truth masks from the 3-class labeling scheme (background-nucleus-
cytoplasm). To evaluate our segmentation models, we used pixel-level intersection-over-union (IoU)
and F1 scores (harmonic mean of precision and recall) as primary metrics. We performed optimization
for at least 20 epochs, and monitored loss on the training set, which converged after approximately
10 epochs (data not shown). The best model from each training session was selected based on the
lowest loss evaluated on the training set.

Next we evaluated model performance on the dev set. The model qualitatively captured cellular
features including the nucleus and cytoplasm (Figure 2, left panel). By examining quantitative
performance metrics (Table 1), we found that a model trained on single-plane brightfield images
performed similarly to a model trained on three-plane brightfield images (compare rows 1 and 2).
Using single-plane images as model inputs has additional advantages, more specifically shorter
acquisition time during microscopy imaging (at least three-fold) and faster training. Thus, we focused
on single-plane images as we explored hyperparameters and alternative labeling schemes.


https://github.com/qubvel/segmentation_models

Table 1: Model metrics evaluated on the dev set

Figure 3: Loss and IoU during training based on number of training images and model architecture

To split fused and sometimes overlapping nuclei, we explicitly trained the model on nuclear outline
("boundary") and border region between two neighboring nuclei ("split"). Qualitatively, the model
recovered both boundary and split regions (Figure 2, right panel, note the blue split region between
two nuclei). However, we observed that predicted labels are often thicker than ground truth labels,
resulting in higher loss and lower IoU/F1 scores (Table 1). We currently do not have a quantitative
measure for the accuracy and efficiency of splitting fused nuclei. We propose to manually split nuclei
based on the nucleus-specific Hoechst stain, against which different models will be evaluated.

Next, we explored the effect of training set size (number of images), loss function, and model
architecture on model performance, focusing on predicting 3-class labels (background-nucleus-
cytoplasm) from single-plane images. We were able to achieve similar loss and IoU score during
training when using a smaller training set (Figure 3), suggesting that smaller training set is not causing
a significant bias problem. When evaluating on the test set, we found that 500 images were sufficient
to train a model with a high IoU score comparable to larger training sets (Figure 4). Additionally, we
found that a model using VGG16 as the encoder performed better than efficientnetb4 (Figure 4, Table
2). And we found that hybrid loss (sum of Dice loss and focal loss) performed better than either Dice
loss or focal loss alone (Table 2).

While examining ground truth and predicted labels, we noticed that the model performs poorly on
mitotic cells, which comprise a small fraction of total cells (~5%) and display a distinct morphology.
We propose to manually annotate mitotic cells based on brightfield and Hoechst stain, and include
them as an additional label class.

6 Contributions

A.B., Y.F, and N.R. conceived the project, performed the experiments, and wrote the report.

7 Code availability

Codes were uploaded to Github: https://github.com/nalinratnayeke/CS230-cell-segmentation. Codes
were adapted from https://github.com/qubvel/segmentation_models|

Scheme Loss ToU (average  Fl (average IoU (nucleus) F1 (nucleus)
over classes) over classes)
Background-nucleus-cytoplasm 0.08477 0.77114 0.84612 0.78615 0.87966
(three-plane image)
Background-nucleus-cytoplasm 0.082248 | 0.77612 0.84943 0.79262 0.88383
(single-plane image)
Background-nucleus-boundary-split | = 444 | 50031 0.62138 0.75169 0.85767
(single-plane image)
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Figure 4: Loss and IoU on test set based on number of training images and model architecture

Table 2: Model metrics evaluated on the test set

Schemes Loss ToU (average  Fl (average IoU (nucleus) F1 (nucleus)
over classes) over classes)
Different loss functions
Hybrid loss 0.085647 0.78086 0.85228 0.80887 0.89389
Dice loss 0.080889 0.76105 0.83958 0.78483 0.87895
Focal loss 0.001512 0.77823 0.85296 0.78522 0.87921
Different model architectures
VGGI16 0.085647 0.78086 0.85228 0.80887 0.89389
efficientnetb4 0.092493 0.76835 0.84596 0.77549 0.87266
References
Works Cited

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for biomedical
image segmentation”. International Conference on Medical image computing and computer-
assisted intervention. Springer. 2015. 234-241. Print.

Sadanandan, Sajith Kecheril, et al. “Automated training of deep convolutional neural networks for
cell segmentation”. Scientific reports 7.1 (2017): 1-7. Print.

Christiansen, Eric M, et al. “In silico labeling: predicting fluorescent labels in unlabeled images”.
Cell 173.3 (2018): 792-803. Print.

Ounkomol, Chawin, et al. “Label-free prediction of three-dimensional fluorescence images from
transmitted-light microscopy”. Nature methods 15.11 (2018): 917-920. Print.

Zhang, Zhengxin, Qingjie Liu, and Yunhong Wang. “Road extraction by deep residual u-net”. IEEE
Geoscience and Remote Sensing Letters 15.5 (2018): 749-753. Print.

Fishman, Dmytro, et al. “Segmenting nuclei in brightfield images with neural networks”. bioRxiv
(2019): 764894. Print.

Guo, Syuan-Ming, et al. “Revealing architectural order with quantitative label-free imaging and deep
neural networks”. BioRxiv (2019): 631101. Print.

Kromp, Florian, et al. “Deep Learning architectures for generalized immunofluorescence based
nuclear image segmentation”. arXiv preprint arXiv:1907.12975 (2019). Print.

Moen, Erick, et al. “Deep learning for cellular image analysis”. Nature methods (2019): 1-14. Print.

Schormann, Wiebke, Santosh Hariharan, and David W Andrews. “A reference library for assigning
protein subcellular localizations by image-based machine learning”. The Journal of Cell Biology
219.3 (2020). Print.



	Introduction
	Related work
	Dataset and features
	Methods 
	Results and discussion
	Contributions 
	Code availability 

