

Pothole Classification Using CNNs

Stanford University

Aditya Gera adigera@stanford.edu

Introduction

- Potholes can cause misalignment of the vehicles from intended path & damage vehicle structure which can lead to accidents.
- With employment of autonomous vehicles in passenger travel, the accurate detection is important for taking evasive measures.
- This study focuses on using convolutional neural networks to come up with a robust model to classify pothole images and suggest some unprecedented applications. The borrowed dataset used consists of images taken in South Africa.

Problem

- Given an image of the road, identify if the image contains potholes or not.
- Compare the performance of ResNet18 and GoogLeNet on the given dataset

Dataset

Original

- Data
- High resolution images of size 3680 x 2760
- 1958 images with potholes
- o 9289 images without potholes

- Distribution
 - Test and Validation Set: 200 positive and 800 negative randomly picked images for each
 - o Train Set: Remaining images.
- Data

- Augmentation
- Resized to 400 x 300 to increase efficiency of computation pipeline
- Random cropping on resized image, horizontal flipping, again resizing to reduce to network's input size.
- Example show in figure below

Architecture

ResNet18 architecture

GoogLeNet architecture

- In both, ResNet18 and GoogLeNet, the no.of of neurons in the last layer have been changed from 1000 to 2 for binary classfication.
- The first and second neuron correspond to negative and positive classification respectively.

Results

The above graphs have weighted metrics

Precision (Train/Test)

Discussion

	Precision	Recall	F1 Score
ResNet18	0.9646	0.9657	0.9651
GoogLeNet	0.9732	0.9735	0.9734

- The weighted, to account for data-imbalance, cross entropy loss gave poorer performance, observed from the matrix on the right compared to the left.
- In all, GoogLeNet gave better results across all the metrics as shown in the table

Future Work

- Experimenting with more architectures, or even building one from scratch
- Collect more varied data which not so much co-related as this dataset

Notable References

For full list please checkout https://github.com/adigera/Pothole-Classification-using-CNNs

- MJ Booysen S. Nienaber and RS Kroon. "A Comparison of Low-Cost Monocular Vision Techniques for Pothole Distance Estimation". In: (Dec. 2015). DOI: 10.1109/SSCI.2015.69.
 MJ Booysen S. Nienaber and RS Kroon. "DETECTING POTHOLES USING SIMPLE IMAGE
- PROCESSING TECHNIQUES AND REAL-WORLD FOOTAGE". In: South African Transport
 Conference