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Abstract

Dataset

Summary

• Work remains to make a U-Net model for LAI viable; options include
1. Additional data augmentation to reduce overfitting
2. Using a wider set of genetic data (e.g. all chromosome 1)
3. Alter model hyperparameters, potentially including dropout at 

higher layers in the U-Net
• Use of our coordinate-based predictions in population-genetic studies 

may be of particular interest to doman experts.

In genomics, local ancestry inference (LAI) is used to estimate the 
ancestral composition of a genomic sequence at high resolution. 
Here, we describe an approach to LAI which leverages deep learning 
techniques developed for image segmentation. We consider two 
formulations of the ancestry inference problem — namely, local and 
global inference — and benchmark our algorithms using real and 
simulated genotype data from the 1000 Genomes Project.

Experiments
• As initial validation of our approach, we trained a model with three 

fully connected layers to predict global continental ancestry from a 
subsample of 500 genetic variants (approximately the window size of 
RFMix). Internal layers were of size 500 and 30 with ReLU activation, 
followed by an output layer of size 5 (softmax activation). This model 
interpolated the training set of 4,000 randomly chosen haplotypes and 
generalized well to the remaining 1,008 test samples (99.7% and 82% 
accuracy), and was quite robust to the sizes and activations of the 
internal layers.
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We use a sample of n=5,008 haplotypes from 2,504 individuals in 
the 1000 Genomes Project (1KG) [2], which collected whole genome 
sequences of individuals across 26 world populations (Table 1).

We here consider a subset of p=57,876 variants on Chromosome 1 
(downsampled for computational tractibility) for ancestry inference.

Table 1: Sample locations and and three-letter codes of 1KG populations, 
with our own color labels for each group.

As genomic samples have become more diverse, LAI has emerged as 
a key processing step in ancestry and disease association studies. 
The input is a set of genetic variants and the output is an ancestry 
assignment, either for the entire sample (global ancestry) or as a 
segmented mask over individual base pairs (LAI; Figure 1). In this 
project we use global ancestry prediction as a stepping stone to LAI.

Figure 1: Pictorial representation of LAI. Ground truth (left) and decoded 
ancestry (right) across segments of a pair of chromosomes. 

The current gold standard for LAI, RFMix [1], uses random forests to 
estimate parameters of a conditional random field model of ancestry 
in genomic windows of size 400kb (400,000 base pairs). 

Future Directions

• Here, we demonstrate high fidelity global ancestry prediction 
from the equivalent of one chromosome of array genotypes.

• We formulate the global ancestry problem as multi-class labeling 
and as coordinate regression. 

• Multi-class classification is accurate up to country/region (e.g. 
CHS/CHB are both Chinese; ITU/STU are from southern Europe). 
Weighting loss by inverse distance improves accuracy between 
nearby populations likely to share similar genetic signatures.

• While less accurate, coordinate predictions recapitulate the 
human migratory history of admixed groups: CEU individuals in 
the test set are scattered across the Atlantic between mainland USA 
and northern Europe; likewise for other American groups (like PUR) 
and western Africa.     

Figure 2: Confusion matrix for CNN with categorical cross-entropy loss 
(L) and inverse distance weighted cross-entropy loss (R) .

• We then built a CNN model of global ancestry which has an input 
conv layer with filters of size/stride 512 with same padding, followed 
by a smoothing convolutional layer with size 64, a stride of 4, and valid 
padding; followed by two fully connected layers to predict the output. 
We trained this model using four loss functions: (1) categorical cross 
entropy loss; cross-entropy loss weighted by (2) the distance between 
true and predicted output or (3) inverse distance; and (4) Haversine 
distance, where we predict coordinates of origin for each sample.   

Figure 3: Geographic predictions for training (top) and test (bottom) sets 
from CNN model of global ancestry, formulated as coordinate regression.

Figure 4: Training and test loss (L) and accuracy (R) for global ancestry 
model with unweighted, distance, and inverse-distance weighted loss.

• Finally, we implemented a model with U-Net architecture for LAI 
based on a publicly available github repository [3]. This choice was 
informed by the high performance of the CNN model, and because 
U-Nets have been shown to work well for segmentation tasks such as 
this one [4]. Though this model fit the training set well, it failed to 
generalize to a holdout test set (data not shown); additional work to 
extend this architecture to a valid LAI model is required.
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