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Abstract

In genomics, local ancestry inference (LAI) is used to estimate the
ancestral composition of a genomic sequence at high resolution.
Here, we describe an approach to LAI which leverages deep learning
techniques developed for image segmentation. We consider two
formulations of the ancestry inference problem — namely, local and
global inference — and benchmark our algorithms using real and
simulated genotype data from the 1000 Genomes Project.

Problem Formulation

As genomic samples have become more diverse, LAI has emerged as
a key processing step in ancestry and disease association studies.
The input is a set of genetic variants and the output is an ancestry
assignment, either for the entire sample (global ancestry) or as a
segmented mask over individual base pairs (LAI; Figure 1). In this
project we use global ancestry prediction as a stepping stone to LAI.
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Figure 1: Pictorial representation of LAI. Ground truth (left) and decoded
ancestry (right) across segments of a pair of chromosomes.

The current gold standard for LAI, RFMix [1], uses random forests to
estimate parameters of a conditional random field model of ancestry
in genomic windows of size 400kb (400,000 base pairs).

Dataset

We use a sample of n=5,008 haplotypes from 2,504 individuals in
the 1000 Genomes Project (1KG) [2], which collected whole genome

sequences of individuals across 26 world populations (Table 1).
Population Code Colorin fig 3

Sn Lankan Tamil in the UK STU

Toscani in Italy TSI

Punjabi in Lahore, Pakistan AL

jJapanese in Tokyo, Japan PT

Chinese Dai in Xishuangbanna, China DX

Utah residents (CEPH) with Northern and Westermn European ancestry CEU
Han Chinese in Beijing, China CHB

Gujarati Indians in Houston, TX GIH

African Ancestry in Southwest US ASW
Gambian in Western Division, The Gambia - Mandinka GWD

Luhya in Webuye, Kenya LWK

Ibernian populations in Spain BS5

Colombian in Medellin, Colombia LM

Finnish in Finland FIN

Puerto Rican in Puerto Rico PUR

Mende in Sierra Leone MSL

Bengali in Bangladesh BEB

Esan in Nigeria ESN

Mexican Ancestry in Los Angeles, California MXL

Kinh in Ho Chi Minh City, Vietnam KHV

African Caribbean in Barbados ACB

Peruvian in Lima, Peru FEL

Han Chinese South CHS

Yoruba in Ibadan, Nigena YRI

Indian Telugu in the UK mu

British in England and Scotland GBR

Table 1: Sample locations and and three-letter codes of 1KG populations,

with our own color labels for each group.

We here consider a subset of p=57,876 variants on Chromosome 1
(downsampled for computational tractibility) for ancestry inference.
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Experiments

 As initial validation of our approach, we trained a model with three
fully connected layers to predict global continental ancestry from a
subsample of 500 genetic variants (approximately the window size of
RFMix). Internal layers were of size 500 and 30 with RelLU activation,
followed by an output layer of size 5 (softmax activation). This model
interpolated the training set of 4,000 randomly chosen haplotypes and
generalized well to the remaining 1,008 test samples (99.7% and 82%
accuracy), and was quite robust to the sizes and activations of the
internal layers.
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Figure 2: Confusion matrix for CNN with categorical cross-entropy loss
(L) and inverse distance weighted cross-entropy loss (R) .

e We then built a CNN model of global ancestry which has an input
conv layer with filters of size/stride 512 with same padding, followed
by a smoothing convolutional layer with size 64, a stride of 4, and valid
padding; followed by two fully connected layers to predict the output.
We trained this model using four loss functions: (1) categorical cross
entropy loss; cross-entropy loss weighted by (2) the distance between
true and predicted output or (3) inverse distance; and (4) Haversine
distance, where we predict coordinates of origin for each sample.
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Figure 3: Geographic predictions for training (top) and test (bottom) sets
from CNN model of global ancestry, formulated as coordinate regression.

Dev set losses of three different model implementations Dev set accuracies of three different model implementations
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Figure 4: Training and test loss (L) and accuracy (R) for global ancestry
model with unweighted, distance, and inverse-distance weighted loss.

« Finally, we implemented a model with U-Net architecture for LAI
based on a publicly available github repository [3]. This choice was
informed by the high performance of the CNN model, and because
U-Nets have been shown to work well for segmentation tasks such as
this one [4]. Though this model fit the training set well, it failed to
generalize to a holdout test set (data not shown); additional work to
extend this architecture to a valid LAI model is required.

Summary

- Here, we demonstrate high fidelity global ancestry prediction
from the equivalent of one chromosome of array genotypes.

« We formulate the global ancestry problem as multi-class labeling
and as coordinate regression.

« Multi-class classification is accurate up to country/region (e.g.
CHS/CHB are both Chinese; ITU/STU are from southern Europe).
Weighting loss by inverse distance improves accuracy between
nearby populations likely to share similar genetic signatures.

 While less accurate, coordinate predictions recapitulate the
human migratory history of admixed groups: CEU individuals in
the test set are scattered across the Atlantic between mainland USA
and northern Europe; likewise for other American groups (like PUR)
and western Africa.

Future Directions

« Work remains to make a U-Net model for LAI viable; options include
1. Additional data augmentation to reduce overfitting
2. Using a wider set of genetic data (e.g. all chromosome 1)
3. Alter model hyperparameters, potentially including dropout at
higher layers in the U-Net

« Use of our coordinate-based predictions in population-genetic studies
may be of particular interest to doman experts.
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