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• Goal is to predict consumer choice given consumer purchase

history along with some observables of consumers and items

and price, time of day, day of week information and so on.

• We explored multinomial logit models, basic Neural net

models, followed by multi-task learning models with and

without embedding and also Bayesian embeddings.

• Building Neural networks with embeddings for these problems

was challenging due to data constraints.

• The best model gives nearly 92.69% accuracy, with 2%

improvements over the state-of-the-art Bayesian embedding

model.

• We are using a novel dataset (~10 GB) from Susan Athey's

Lab at Stanford GSB, on user shopping choice derived from

multiple grocery stores in a large geographical region.

• The data contains complete billing information for a store on

each day including information about transaction id, date, user

id (from loyalty card logs), item id, price and quantity.

• We have partial user observables which includes generic

personal attributes.

• And, also some information about items and information about

their hierarchical classification into groups (typical examples

are fruit, milk, detergent).

Features
• Our model belongs to the class of basic collaborative filtering

models, except that our problem comes with repeated choice

and more structure.

• We use a demographic user feature which is whether the user

is married only present for 10% of users.

• Another feature we derive from the data is the tercile of every

user for the number of items they purchase given a visit.

• modeling choice per category encodes category information

much like a feature vector would to incorporate the item

features.

• We use the following time features; month of year, week of

year and day of week.

Input Feature Vector

Output Feature Vector

Multi-Task Learning with Embeddings
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The numbers are calculated per category and weighted by

number of purchases for each category.

• There had been no deep learning models being used for this

problem so far.

• We also observe that the baseline model on user-item frequency

performs better than the basic and unrestricted MNL models.

• In the series of models we designed, the best performing multi-

task model with user embeddings beats state of the art

embedding models which is a non-deep learning model.

• We are currently investigating the utility of this model in the real

world.

• An exciting point of difference is how counterfactual accuracy

would compare for our deep learning models versus current

state of the art models.
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