
Video deepfakes detection using Deep Learning
Dong Bing Luke Kim Sergei Petrov
{bingdong, mkim14, spetrov}@stanford.edu

Motivation

References

[1] Kaggle deepfake detection challenge
https://www.kaggle.com/c/deepfake-detection-challenge
[2] Thanh Thi Nguyen, Cuong M. Nguyen, Dung Tien Nguyen,
Duc Thanh Nguyen and Saeid Nahavandi Deep Learning for
Deepfakes Creation and Detection.
https://arxiv.org/pdf/1909.11573.pdf
[3] https://github.com/harvitronix/five-video-classification-
methods
[4] Francois Chollet. Xception: Deep Learning with Depthwise
Separable Convolutions https://arxiv.org/pdf/1610.02357.pdf

.

Discussion

Experiments and Implementation

Deepfake techniques, which present realistic AI-generated
videos of people doing and saying fictional things, have the
potential to have a significant impact on how people
determine the legitimacy of information presented online.
In this project we are focusing on using machine learning
techniques to detect deepfakes using data provided by
Kaggle as a part of a challenge [1]

Datasets

● It seems that even deep conventional purely
convolutional architectures are unable to capture the
patterns within data to tell the difference between real
and fakes with enough level of confidence

● Unsatisfactory accuracy achieved with LSTM It may be
related to the sequential nature of LSTM – it is good at
recognizing sequences (i.e. classifying different activities
in videos), but any actions in our training examples are
completely unrelated to their labels. Videos can be real or
fakes regardless of whether actors move their heads,
turn, walk or remain motionless.

● Xception showed the best results, but was still unable to
reach human level accuracy. Probably, the source of the
problem is challenging nature of task and complexity of
the data

Methods

There are 4 groups of datasets available:
● Training set: The complete dataset, containing labels

for the target. There are 470 Gb of archived videos in it.
● Sample sets: There is a small dataset of 400 labeled

videos directly available from any notebook within the
challenge, we used it for testing purposes. Also there is
a set of 400 unlabeled videos that are used to create an
output submission table.

● Public test set: This dataset is completely withheld and
is what Kaggle’s platform computes the public
leaderboard against. When notebook is committed, the
code is re-run in the background against this dataset.

● ResNet-50 and VGG16 are deep convolutional neural
network pretrained on more than a million images from
the ImageNet repository.

● CNN+LSTM consists of several blocks of conv layers
with an LSTM head. Each layer preceding an LSTM is
time distributed, meaning that it was applied to every
time step in an input example. Input to the network was
4-dimensional, with the 4th dimension corresponding
to time [3].

● Xception architecture includes 36 convolutional layers
that are structured into 14 modules all of which have
linear residual connections around them, except for the
first and last modules. The idea is based on depthwise
separable convolutions usage. First, to each of the input
channels 3x3 convolution is applied, extracting spatial
information from each channel independently. Then,
1x1 convolution is applied to gain information from a
cross-channel dimension [4].

● Logistic Regression and SVM (with linear kernel) were
implemented. Regression yielded a train accuracy of
83.25% and a validation accuracy of 83.33%. SVM did
worse than Logistic Regression, ending up with a 67%
validation accuracy.

● ResNet50 and VGG16 were finetuned on our dataset.
Training accuracy reached 0.8, validation accuracy was
lower, around 0.7.

● We trained simple CNNs from scratch. We tried two
architectures shown in Figure 1. At the end of both
networks there are two fully connected layers with 120
and 84 hidden units. The first architecture performed
better. After the 1st epoch the network seems to make
no progress, and its training accuracy reaches a plateau
at around 0.8. Validation accuracy reached 0.75.

CNNs architectures

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

Ac
cu

ra
cy

batch number

CNN1

batch acc batch loss

CNN training process

● We trained CNN+LSTM architecture. Again, training
accuracy reaches plateau at around 0.87, what is
better, than for CNN architectures described above, but
the algorithm still cannot reach a satisfactory accuracy
value. Validation accuracy reached 0.85 at the end of
training.

CNN+LSTM architecture

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

Ac
cu

ra
cy

batch number

CNN+LSTM

batch acc batch loss

CNN+LSTM training process

● Our final experiment involved an Xception architecture.
We reproduced the architecture from the original paper
[4] and then tuned hyperparamets and played a bit with
the architecture itself.

Xception architecture
[4]

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

Ac
cu

ra
cy

batch number

Xception

batch acc batch loss

With Xception we managed to fit the training set perfectly,
the maximum validation accuracy achieved was around
0.84. Also the validation loss is the lowest, it went down to
0.05 at the end of the training.

Xception training process

https://www.kaggle.com/c/deepfake-detection-challenge
https://arxiv.org/pdf/1909.11573.pdf
https://github.com/harvitronix/five-video-classification-methods
https://arxiv.org/pdf/1610.02357.pdf

