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Discussion

Experiments and Implementation

Deepfake techniques, which present realistic AI-generated
videos of people doing and saying fictional things, have the
potential to have a significant impact on how people
determine the legitimacy of information presented online.
In this project we are focusing on using machine learning
techniques to detect deepfakes using data provided by
Kaggle as a part of a challenge [1]

Datasets

● It seems that even deep conventional purely 
convolutional architectures are unable to capture the 
patterns within data to tell the difference between real 
and fakes with enough level of confidence

● Unsatisfactory accuracy achieved with LSTM It may be 
related to the sequential nature of LSTM – it is good at 
recognizing sequences (i.e. classifying different activities 
in videos), but any actions in our training examples are 
completely unrelated to their labels. Videos can be real or 
fakes regardless of whether actors move their heads, 
turn, walk or remain motionless.

● Xception showed the best results, but was still unable to 
reach human level accuracy. Probably, the source of the 
problem is challenging nature of task and complexity of 
the data

Methods

There are 4 groups of datasets available:
● Training set: The complete dataset, containing labels 

for the target. There are 470 Gb of archived videos in it.
● Sample sets: There is a small dataset of 400 labeled 

videos directly available from any notebook within the 
challenge, we used it for testing purposes. Also there is 
a set of 400 unlabeled videos that are used to create an 
output submission table.

● Public test set: This dataset is completely withheld and 
is what Kaggle’s platform computes the public 
leaderboard against. When notebook is committed, the 
code is re-run in the background against this dataset.

● ResNet-50 and VGG16 are deep convolutional neural 
network pretrained on more than a million images from 
the ImageNet repository. 

● CNN+LSTM consists of several blocks of conv layers 
with an LSTM head. Each layer preceding an LSTM is 
time distributed, meaning that it was applied to every 
time step in an input example. Input to the network was 
4-dimensional, with the 4th dimension corresponding 
to time [3]. 

● Xception architecture includes 36 convolutional layers 
that are structured into 14 modules all of which have 
linear residual connections around them, except for the 
first and last modules. The idea is based on depthwise
separable convolutions usage. First, to each of the input 
channels 3x3 convolution is applied, extracting spatial 
information from each channel independently. Then, 
1x1 convolution is applied to gain information from a 
cross-channel dimension [4]. 

● Logistic Regression and SVM (with linear kernel) were 
implemented. Regression yielded a train accuracy of 
83.25% and a validation accuracy of 83.33%. SVM did 
worse than Logistic Regression, ending up with a 67%
validation accuracy.

● ResNet50 and VGG16 were finetuned on our dataset. 
Training accuracy reached 0.8, validation accuracy was 
lower, around 0.7.

● We trained simple CNNs from scratch. We tried two 
architectures shown in Figure 1. At the end of both 
networks there are two fully connected layers with 120 
and 84 hidden units. The first architecture performed 
better. After the 1st epoch the network seems to make 
no progress, and its training accuracy reaches a plateau 
at around 0.8. Validation accuracy reached 0.75.

CNNs architectures
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CNN training process

● We trained CNN+LSTM architecture. Again, training 
accuracy reaches plateau at around 0.87, what is 
better, than for CNN architectures described above, but 
the algorithm still cannot reach a satisfactory accuracy 
value. Validation accuracy reached 0.85 at the end of 
training.

CNN+LSTM architecture
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CNN+LSTM training process

● Our final experiment involved an Xception architecture. 
We reproduced the architecture from the original paper 
[4] and then tuned hyperparamets and played a bit with 
the architecture itself.

Xception architecture
[4]
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With Xception we managed to fit the training set perfectly, 
the maximum validation accuracy achieved was around 
0.84. Also the validation loss is the lowest, it went down to 
0.05 at the end of the training.

Xception training process
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