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Motivation/Summary Qualitative Results

« Seismic data analysis is a crucial step for the Oil and Gas industry. oo mmmemmmmmsmsososoaoa ; N T
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« It helps to define the most accurate place to drill production wells, with
enormous commercial value.

|ea.

"‘“_

.
N
b ATy '!‘, -

: . ! 2 "'
i : ) \’f . ; J “Y' f‘
ol w : : »

e Seismic attributes are measurements over 3D volumes, that
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represents imaging snapshot of sub-surfaces [1]. R nesidualBlocks - é_____fgmmua.mm ’ T | &‘ Bt i ”z,ji}y‘ é
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« Seismic surveys can reach terabytes. Processing are expensive. [ | il ) grme - DATA" S 5
« We are proposing to train conditional GANSs to learn how to compute .
seismic attributes. St Loss Function [6]
Original S
» Using our approach, we're able to compute attributes over seismic . v é ming maxp, p,. D, Z Lcan (G, Dy)
blocks in real-time, with a speedup of 80x, in comparison with the ! Lo k=1,2,3
classical formulation. D2 ©
j, E(s.a)[l0gDy (s,a)] + Eg[log(1 — Dy (s, G(s))] s
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« Coarse-to-fine-generator: Global generator G2 and local enhancer G1.

[ea.

« Multi-scale Discriminator: Discriminator D1,D2, and D3 operates on different
Image scales.

Results
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(b) real (c) synthetic
Traini ng Setu P Figure 3 — Conditional GANSs trained to compute Semblance (top), Instantaneous Phase (middle) and Energy (bottom) attributes.
* We trained dozens of networks from scratch, for three attributes (Phase, - The overall image structure is well captured.

Energy and Semblance) and selected the best models. , _ _ _ _ _ _
» Local features presented minor differences in expanded regions of interest (Figure 3, right

Figure 1 — A seismic attribute is a mapping between original volume D, « The complete training cycle takes 2 days on NVIDIA DGX-1 servers (8x Tesla panels)
and a mathematical transformation An V100 GPUs — 32G BS). .
Inference Results :
Dataset  Average time to compute attributes with the classical formulation: 62 seconds. Conclusions

Our approach inferring conditional GANs: 0.78 seconds.

. Seismic data are represented as 3D volumes. We_ concludg thqt condltlongl GANS can _successfull_y approxmate the computation of_selsmlc
=ach voxel is an amplitude response (32-bits floating-point) Dataset Phase Enerey Semblance OD Average Time Ours Speedup attributes, with high visual fidelity, and minor numerical differences. The goal was achieved, and
* - - : : . _ attributes over entire seismic blocks could be computed in real-time, with an 80x speedup.
oY | NomeField2006 595 25s 345 56.22s 0.70s  80.47 P peedup
* We collected data at SEG [2] and USGS [3] repositories, from different SantaYnez3D_2  67s 27s 110s 68.11s 0.86s  79.57 . The presented architecture may operate as a universal attribute calculator, with some restrictions.
arts of the world (Table 1). . : . . . :
P ( ) Table 2 — Computation time for exact and DL approaches. * For a high-quality numerical reconstruction, we must specialize the model and properly adjust the
Dataset Name ~ Geography  Size (GB) Grid Dimension _ . . _ architecture and tune the hyperparameter space to fit each data.
Boseidon3D Fe— 55 (553 % 2351 % 047) « The presented architecture may operate as a universal attribute calculator, with _ o _
ParihakaiD  New Zealand 30 (870 x 1040 x 1080) some restrictions. * For future work, we want to perform architectural modifications and explore 3D convolutions.
SantaYnez3D_1  United States 2.1 389 x 1074 x 1260 : : : . T o i i i i Taly i
S Vior3aD D Unitad Stato s E%‘Q 1163 « 1176% » For a high-quality numerical reconstruction, we must specialize the model. Acknowledgment | V\{ould like to thank Vineet Sai Kosaraju for the insightful comments during
NorneFiled2006  Netherlands 1.1 (321 x 1001 x 851) the development of this work.
Attribute MSE (RGT) PSNR (RGT) MSE (Ours) PSNR (Ours) SSIM (Ours)
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