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Overview
This project attempts motion-based handwriting recognition to 
explore an alternative to a vision-based approach, for various use 
cases where there is no convenient surface to write on (e.g. VR).

For this project, we build the collection hardware with Arduino 
and motion sensor, collect our own original dataset of written 
individual letters as training data, and written words as test data. 

We solve this problem by building a word reconstruction 
pipeline that splits a given sequence to segments, search through 
combinations of segments for optimal trajectories, then 
auto-correct to produce a production word. Finally, we experiment 
with domain adaptation to handle unseen data distribution.

Data Augmentation
With a small dataset of individually written letter, we augment the 
training set to approach the distribution continuous writing:

○ shape modification adding noise, stretching, rotating
○ prepend / append frames from other letter samples
○ trimming off small number of frames off current sample

We also create non-class labeled samples by taking a 
combination of noise and partial letter samples.
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The character classifier is an encoder-decoder, with a LSTM 
encoder that encodes frames of motion data into states, then a 
feed-forward network decodes into a character class. 

All combinations of segments are forwarded through the model in 
a batch to parallelize computation. The character classifier 
produces 26 candidate letter predictions ranked by logits for 
each segments. Non-class candidates are discarded.

Trajectory Search

ReLU

We search through all candidates of all segments to form 
trajectories, combination of candidates through the sequence. 

At each split-point, we keep the top ranking sub-trajectories 
("beams") by average logit over constituting candidates. Trajectory 
search is a dynamic programming problem, where optimal 
sub-trajectories starting at a split-point must be optimal for all 
sub-trajectory arriving at this split-point. 
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Auto Correction
We implemented our auto-correction model based on Symmetric 
Delete spelling correction (SymSpell) algorithm. However, instead 
of directly auto-correcting the Top 1 result from the Trajectory 
Search, we auto-correct all available predictions from word search 
and use the confidence     from the word search, the frequency  
and edit distance     from auto-correction lookup result, to pick the 
final predicted word. We experiment with four different techniques, 
where we finalize word based on MaxVote (max # of repeated 
occurrence), SumConf (max sum confidence     ), Division 
Combination (max sum of                      ), or Power Combination 
(max sum of                           ). Note that we sum these properties 
only when the auto-correction outputs belong to the same word.
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To compensate the lack of generalized dataset, we use domain 
adaptation to transfer the knowledge and feature extractor the 
model learned from the limited dataset into any new user of the 
device. We train the model with the following loss function:

Experiment Results
Character classifier hyperparameter search: we perform a 
random search to find the best performing model has 8 LSTM 
layers of 275 dimensional hidden states, and 88 FC hidden units.

Word reconstruction hyperparameter search: we perform a grid 
search on number of splits per letter (G), and number of beams for 
trajectory search (K), and evaluate on average edit distance:

Domain Adaptation

Analysis and Discussion

Auto-correction:

Train Acc Dev Acc Test Acc
Original - - 0.13725
Fine-Tuning 0.96323 0.49057 0.49020
Domain Adaptation 0.99185 0.64780 0.70588

○ Character classifier with a complex LSTM encoder and simple  
FC decoder works better, to encode complex features from raw 
data, while avoiding overfitting.

○ Trajectory search with a higher number of beams produces 
higher accuracy by producing more "confident options" to 
auto-correct, while a higher number of split worsens 
performance by introducing noise and more false predictions.

○ Auto-correction with the Direct Combination (D.C.) technique is 
able to produce the most accurate prediction, and contributes to 
our final word reconstruction pipeline’s accuracy of 0.888.

○ Domain adaptation is able to boost accuracy significantly for the 
character classifier, but is unable to improve sufficiently for 
accurate trajectory search. With a base model trained with better 
data, DA is a data-efficient way to apply the model to real world.

Future Work
○ Apply multi-threading to parallelize trajectory search
○ Improve data collection strategy, and collect more, cleaner data 

to train a better base model
○ Experiment with other auto-correction and domain adaptation 

techniques

Top 1 MaxVote SumConf D.C. P.C.
OOD 0.229 0.208 0.229 0.292 0.260
ID-1 0.674 0.640 0.685 0.832 0.787
ID-2 0.678 0.711 0.733 0.944 0.900
ID-avg 0.676 0.676 0.710 0.888 0.844

Out-of-Domain Character Classification:

Video Presentation Link: https://youtu.be/sYK3rznT5nI


