
Motion-Based Handwriting Recognition and Word Reconstruction
Junshen Kevin Chen, Wanze Xie, Yutong He | {jkc1,wanzexie,kellyyhe}[at]stanford.edu

Overview
This project attempts motion-based handwriting recognition to
explore an alternative to a vision-based approach, for various use
cases where there is no convenient surface to write on (e.g. VR).

For this project, we build the collection hardware with Arduino
and motion sensor, collect our own original dataset of written
individual letters as training data, and written words as test data.

We solve this problem by building a word reconstruction
pipeline that splits a given sequence to segments, search through
combinations of segments for optimal trajectories, then
auto-correct to produce a production word. Finally, we experiment
with domain adaptation to handle unseen data distribution.

Data Augmentation
With a small dataset of individually written letter, we augment the
training set to approach the distribution continuous writing:

○ shape modification adding noise, stretching, rotating
○ prepend / append frames from other letter samples
○ trimming off small number of frames off current sample

We also create non-class labeled samples by taking a
combination of noise and partial letter samples.

Word Reconstruction Pipeline

word sequence segmentation
segment

combinations
character
classifier

candidates
(w/ logits)

trajectory
search

trajectories auto correct
word

string

Character Classifier

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

...

n layers

x
0

x
1

x
2

x
m

LSTM LSTM LSTM LSTM
hidden
states

cell
states

flatten

logitsencoder

decoder

FC ?

FC 27

The character classifier is an encoder-decoder, with a LSTM
encoder that encodes frames of motion data into states, then a
feed-forward network decodes into a character class.

All combinations of segments are forwarded through the model in
a batch to parallelize computation. The character classifier
produces 26 candidate letter predictions ranked by logits for
each segments. Non-class candidates are discarded.

Trajectory Search

ReLU

We search through all candidates of all segments to form
trajectories, combination of candidates through the sequence.

At each split-point, we keep the top ranking sub-trajectories
("beams") by average logit over constituting candidates. Trajectory
search is a dynamic programming problem, where optimal
sub-trajectories starting at a split-point must be optimal for all
sub-trajectory arriving at this split-point.

C

C

O

A T

A

O U

R T

∅ ∅

1 2 3 4 5 6 7 8 9 10 110

 CAT:27
 CAT:26
 CART:25
 OAT:23
 COUT:23
 COURT:22
 OORT: 20

Auto Correction
We implemented our auto-correction model based on Symmetric
Delete spelling correction (SymSpell) algorithm. However, instead
of directly auto-correcting the Top 1 result from the Trajectory
Search, we auto-correct all available predictions from word search
and use the confidence from the word search, the frequency
and edit distance from auto-correction lookup result, to pick the
final predicted word. We experiment with four different techniques,
where we finalize word based on MaxVote (max # of repeated
occurrence), SumConf (max sum confidence), Division
Combination (max sum of), or Power Combination
(max sum of). Note that we sum these properties
only when the auto-correction outputs belong to the same word.

...x
0

x
1

x
2 x

m

LSTM Encoder

hidden
states

cell
states

flatten

Softmax

Letter
classifier

FC 200
ReLU
FC 27

Sigmoid

Domain
Classifier

FC 100
ReLU
FC 1

Letter class 0/1

To compensate the lack of generalized dataset, we use domain
adaptation to transfer the knowledge and feature extractor the
model learned from the limited dataset into any new user of the
device. We train the model with the following loss function:

Experiment Results
Character classifier hyperparameter search: we perform a
random search to find the best performing model has 8 LSTM
layers of 275 dimensional hidden states, and 88 FC hidden units.

Word reconstruction hyperparameter search: we perform a grid
search on number of splits per letter (G), and number of beams for
trajectory search (K), and evaluate on average edit distance:

Domain Adaptation

Analysis and Discussion

Auto-correction:

Train Acc Dev Acc Test Acc
Original - - 0.13725
Fine-Tuning 0.96323 0.49057 0.49020
Domain Adaptation 0.99185 0.64780 0.70588

○ Character classifier with a complex LSTM encoder and simple
FC decoder works better, to encode complex features from raw
data, while avoiding overfitting.

○ Trajectory search with a higher number of beams produces
higher accuracy by producing more "confident options" to
auto-correct, while a higher number of split worsens
performance by introducing noise and more false predictions.

○ Auto-correction with the Direct Combination (D.C.) technique is
able to produce the most accurate prediction, and contributes to
our final word reconstruction pipeline’s accuracy of 0.888.

○ Domain adaptation is able to boost accuracy significantly for the
character classifier, but is unable to improve sufficiently for
accurate trajectory search. With a base model trained with better
data, DA is a data-efficient way to apply the model to real world.

Future Work
○ Apply multi-threading to parallelize trajectory search
○ Improve data collection strategy, and collect more, cleaner data

to train a better base model
○ Experiment with other auto-correction and domain adaptation

techniques

Top 1 MaxVote SumConf D.C. P.C.
OOD 0.229 0.208 0.229 0.292 0.260
ID-1 0.674 0.640 0.685 0.832 0.787
ID-2 0.678 0.711 0.733 0.944 0.900
ID-avg 0.676 0.676 0.710 0.888 0.844

Out-of-Domain Character Classification:

Video Presentation Link: https://youtu.be/sYK3rznT5nI

