
Methods

Abstractive Summarization for structured conversational text
Ayush Chordia (ayushc@stanford.edu) (Video Link: https://youtu.be/iD87gfueBCw)

CS230 FINAL PROJECT PRESENTATION, STANFORD UNIVERSITY

Motivation & Objectives

Datasets

• Neural approaches to abstractive summarization have been
previously implemented by using sequence-to-sequence
models where an encoder maps sequence of tokens from
the source document x = [x1, ..., xn] to sequence of
continuous representations z = [z1, ..., zn] and a decoder
generates target summary y = [y1, ..., ym] token-by-token

• Baseline metrics, the current model was trained on
CNN/Daily Mail dataset as mentioned in Nallapati et al. [1],
the dataset itself contains news article (781 tokens on
average) paired with multi-sentence summaries (3.75
sentences or 56 tokens on average).

• Transcripts of earning call for public companies along with
annotated summaries were also used during training.

• The annotated meeting conversation from AMI corpus
along with their abstractive summaries were also added to
training and test set

• The dataset was prepared by first splitting the sentences
with Stanford CoreNLP toolkit (pre-processed using the
techniques mentioned in See et al. [2].

• Abstractive summarization is the task of generating a
summary comprising of a few sentences that meaningfully
captures the important context from given text input.

• Known challenging problem in NLP since summarization
doesn’t involve selecting existing sentences from the input,
instead paraphrasing the main contents of the document
using vocabulary previously unseen

Results

References
[1] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar
Gulcehre and Bing Xiang “Abstractive Text Summarization using
Sequence-to-sequence RNNs and Beyond”. In: arXiv preprint
arXiv:1602.06023 (2016).
[2] Abigail See, Peter J Liu, Christopher D Manning “Get to the Point:
Summarization with Pointer Generator Network”. In: arXiv preprint
arXiv:1704.04368 (2017)
[3] Yang Liu, Mirella Lapata “Text Summarization with Pretrained
Encoders”. In: arXiv preprint arXiv:1908.08345 (2019)
[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies

Experiments

Model 1
• One of the limitations of the architecture proposed in See et al. [4] was that

the article was truncated to 400 tokens during training and test time and
limits the length of summary to 100 tokens for training and 120 tokens for
testing

• The current model was trained on Quadro P400 GPU with batch size of 16
and trained for 75,000 iterations and it took 3 day 16 hours for the current
checkpoint with the 50k vocabulary

Model 2
• I used the Pytorch, OpenNMT and the bert-base-uncased version of BERT,

both source and target texts were tokenized with BERT’s subwords
tokenizer

Pointer Generator Network (Model 1)

Baseline Model: Sequence-to-sequence attention
model
• The tokens of article are fed into an encoder (single layer
bidirectional LSTM), producing sequence of encoder
hidden states. On each step t, the decoder (single layer
unidirectional LSTM) receives the word embedding of the
previous word.

Pointer-Generator Network
• It allows both copying words via pointing and generating
words from a fixed vocabulary. For each decoder timestep
a generation probability p(gen) ∈ [0,1] is calculated, that
weighs the probability of generating words from
vocabulary versus copying words from source text

Coverage
• The coverage is used to solve this problem by maintaining a
coverage vector which is the sum of attention distributions over
all previous decoder timesteps. This coverage vector is an extra
input to the attention mechanism’s current decision

Pretrained Encoders using BERT (Model 2)

• Pertained language models have been used as encoders for
sentence and paragraph level natural level understanding
problems. In this architecture, the impact of language model
pertaining was measured on summarization.

• Architecture is based on Liu et al. [3] where the document level
encoder based on BERT (Devlin et al. 2019 [4] is used to encode
a document and obtain representation for its sentences. The
potential of BERT was explored in the second model by
leveraging the encoder-decoder architecture, combining the
pertained BERT encoder as described above with randomly
initialized 6-layer Transformer decoder

Figure 1: Architecture of the original BERT model (left) and
Pretrained Encoders using BERT for summarization
(right). The sequence on top is the input document,
followed by the summation of three kinds of embeddings for
each token.

• In the abstractive model, dropout (with probability 0.1) was applied
before all linear layers, label smoothing with smoothing factor 0.1 was
also used.

• The model was trained on 2 Tesla P100 GPU and it took 4 days to train
the model to 156,000 iterations.

Figure 2: Current Metrics on train and validation set

• ROUGE score with standard options was used the metric for
evaluation. The idea behind Rouge score is to count the number of
overlapping unites between generated and referenced summaries.

• We plan to report the F-measures of ROUGE-1 (R-1), ROUGE-2
(R-2), ROUGE-L(R-L). The current test set compromised of 12,000
input text and corresponding summaries

Model ROUGE-1 ROUGE-2 ROUGE-L

Model 1 0.3642 0.1552 0.3322

Model 2 0.4095 0.1864 0.3793

