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Hyperparameter Tuning

1-D encodings 
are limited in 
complexity

Neural-Fingerprints 
allow for end to end 
learning of molecule

Motivation and Methods
Ionic liquids (ILs) are of interest in fields ranging
from batteries to carbon capture[1]. Accurate
prediction of their physiochemical properties
enables high throughput screening and thus
accelerates their practical application in
tangible technologies.

We aim to predict the melting point and viscosity of ionic
liquids, using the chemical structure of the anion and cation.

Rather than using a 1-D encoding of the molecule, we adapted a 
neural fingerprinting technique[2] to encode the molecules. 

Viscosity ranged over 8 orders of magnitude, so a logarithmic
transformation was applied to allow large and small values to
contribute more evenly during training. Melting point values
were scaled between –1 and 1.

Chemical structure 
was fed into the 
network via a 
SMILES string

A representative entry in our dataset: 

Our model uses a neural fingerprinting process, adapted from
St. John et al.[4] to capture features from both the atoms in a
molecule and each atom’s local bonding environment. For
each time step, these message-passing steps are as follows:
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For each bond, the bonding atom’s feature
vector is multiplied with the corresponding
bond matrix to generate the message

Atom feature vectors are updated based
on the learned bond-dependence and
the previous time step’s feature vectors

After message-passing was performed, the graph output layers
were summed to give a neural fingerprint of adjustable length
which was then fed into the head of the network.

Train 0.124 log(cP) 14.78 K 30.43 K
Dev 0.155 log(cP) 35.48 K 37.20 K
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Our model used an existing relation 
for temperature dependence of 
viscosity prior to the network output

The architecture was first tuned to optimize for variance with
learning rate later adjusted via step decay for highest accuracy.
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Index 3#@ABCD 3E.FD Atom Features
Size

Fingerprint
Size Mixing Size Message Passing

Steps
1 0.913162 0.708920 32 8 12 4

2 0.910837 0.691588 32 8 8 4

3 0.910206 0.683271 32 8 32 4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
12 0.896435 0.674678 32 8 32 3

13 0.895648 0.713652 32 32 20 4

14 0.894692 0.664827 32 16 32 3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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Emphasis would be placed on expanding both datasets with
additional unique ionic liquids. This is in hopes to reduce
melting point variance and viscosity predictive performance of
“unseen” ionic liquids. Both models could also be combined to
one to train embedding matrices on the combined set of ILs.

Atom features size and number of message passing steps are
critical hyperparameters. The viscosity model performance does
not surpass the best models in literature, but does provide
reasonable accuracy considering its significantly larger,
more diverse dataset. Melting point prediction struggled
with large variance, likely due to the small data set size.
Transfer learning decreased apparent variance but increased
melting point bias, possibly because the embedding was not
trained on ILs unique to the melting point data set.


