DEEP LEARNING FOR IN-GAME NFL PREDICTIONS

Cameron Taylor cntaylor@stanford.edu Link to presentation

Data

PROBLEM / MOTIVATION

Problem: In-game NFL play-calling crucial, pre-play predictions important input to strategizing.

Idea: Use pre-play data, including images, to predict outcome of play.

Model: Benchmark ML, CNN, Transfer learning

- Input = Pre-play situation + Image
- Output = (1) Yards on play
 - (2) Offensive play call (pass or run)

Results:

- (1) is too difficult with data and models
- Higher accuracy on (2)
- Image data not much value

DATA / FEATURES

- . Kaggle play-by-play NFL data [1]
 - Provides labels: Y1 = yards gained, Y2 = 1{pass play}
 - Other pre-play info (X1); Ex: Score, time, etc.
- 2. Manually collected 1,049 play images (X2) on NFL Rewind Merge 1. + 2. by play

MODELS

- Benchmark (1) = median yards (2) = guess most common play
- Benchmark ML w/o image data (just X1) (LASSO and RF)
- Shallow CNN w/ pre-play and image (X1 and X2)
- Transfer Learning w/ VGG19 [2] trained on ImageNet (X1 and X2)

RESULTS

Hyperparameters

Model	Mean Absolute Yards	# in Train = 78
Benchmark: Guess Median of Training y	6.18	
LASSO	6.18	# in test = 132
(HPs: $\alpha = 0.0176$)		• •
Random Forest	6.16	Training
(HPs: number trees = 3, max depth trees = 3)		Absolute Yard
Shallow CNN	6.18	
(HPs: learning rate = 2.5×10^{-5} , epochs = 15, mini-batch = 32,		Approx 3
# hidden units in dense layer =5, L2 reg = 0.001)		
VGG19 Transfer Learning	6.21	1
(HPs: learning rate = 2.5×10^{-6} , epochs = 15, mini-batch = 32,		A
# hidden units in dense layer = 2, conv layers from VGG = 5)		Approx 3
Notes: HP = Hyperparameters.		
Table 1: Results for Predicting Yardage Outcomes		
Model	Accuracy	-
Benchmark: Guess all plays are pass	0.546	
LASSO	0.568	
(HPs: $\alpha = 0.0176$)		Training
Random Forest	0.614	Accuracy
(HPs: number trees = 2, max depth trees = 7)		
Shallow CNN	0.606	Approx 0.9
(HPs: learning rate = 1.0×10^{-3} , epochs = 15, mini-batch =	= 32,	
# hidden units in dense layer =4, L2 reg = 0.005)		
VGG19 Transfer Learning	0.606	
(HPs: learning rate = 1.0×10^{-3} , epochs = 10, mini-batch =	= 32,	Approx 0.9
# hidden units in dense layer = 4, conv layers from VGG = 5		

Table 2: Results for Predicting Play Call

DISCUSSION

- Models did NOT do well on predicting yards
- Why? Benchmark as good
- Interpretation: not enough signal in the image or pre-play data for problem, too much overfitting
- 2. Models perform well on predicting play call
- Why? Achieve better test accuracy
- Interpretation: learn important times for certain play calls and how to predict based on player locations
- 3. Image data does not provide higher value
- Why? Pre-play RF does better
- Interpretation: pre-play data as valuable as player locations in problem

FUTURE WORK

- I. Figure out how to extract more signal for predicting yards (more detailed video data)
- 2. Add more structure to image data (label players) and transfer learning on other models (YOLO) to improve performance
- 3. Evidence for interpretations

REFERENCES

[1] Max Horowitz, Ronald Yurko, and Sam Ventura. "Detailed NFL Play-by-Play Data 2009-2018." Kaggle.

[2] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556 [cs], April 2015