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Motivation and Overview 
In the field of music generation, most work has focused on instruments 

with few physical limitations, such as piano. Fewer still have differences in 

note structure, generating output with identical note lengths and offsets. 

We applied RNN techniques to trumpet music, which has physical limita-

tions and other features, to try and solve this. Our input data consists of 

trumpet note beginnings, ends, and rests. Our output data for our classifier 

consists of the next musical token, and our generator then creates a MIDI. 

We curated our own dataset of just under 2,000 trumpet melodies from 

www.8notes.com [1], gathering their freely available MIDI files for the 

trumpet and other instruments. We then convert these MIDI files into se-

quences of notes (more on this in the next section). Additionally, we aug-

ment this dataset by shifting the pitch of every note up by 6 MIDI pitches 

and down by 5 MIDI pitches, to simulate each sequence being played in 

every key. This yields 933,102 sequences for sequences of length 10 and 

920,197 sequences for sequences of length 50. 

Our feature vectors are composed of a series of encoded tokens of varying 

length, where this varying length is given by the sequence length hyperpa-

rameter. This hyperparameter was tested at length 10 and at length 50. 

Each of the MIDI files listed above is converted into a sequence of string to-

kens, such as “t88” (which represents starting to play note 88 on the trum-

pet), “endt88” (which represents halting a note 88 being played on the 

trumpet), and “wait12” (which means to wait for 12 ticks). These string to-

kens are then converted via a dictionary to integer values, where note be-

ginnings are towards the start, note endings are towards the middle, and 

wait periods are towards the end. Outputs are converted in the same man-

ner. 

As shown below, both our classification and generation algorithm reached impressive results. Our best classifier (which we subsequently used for 

generation) managed to achieve well over 70% accuracy for both the training and test set, although it suffered from high variance  despite drop-

out. Subsequently, we used different saved epochs from training this model to generate music, which is shown further below and gradually in-

creased in complexity as time trained increased. 

Data 

Features 

Results 

 
Training Set 

Accuracy 

Test Set 

Accuracy 

Sequence size 10 w/o augment 0.6762 0.6562 

Sequence size 10 w/ augment 0.6781 0.6587 

Sequence size 50 w/o augment 0.7654 0.7152 

Classification: 

Classifier Model 

MIDI 

 Note 1 Note 2 Note m ... 

Discussion 

Future 

Our classification results were very promising, as we did not expect to achieve 

over 70% accuracy on predicting the next output. Given enough time to train 

more powerful models, train the models we created for more epochs, and 

add data augmentation to the model of sequence length 50, we believe that 

we might have been able to surpass both the variance problem present and 

achieve an accuracy in the realm of 80-90%. 

Additionally, our generation was a success, despite the fact that we did not 

have time to formally evaluate it as we initially planned. Our output music 

was able to create playable music for a trumpet player that respected physical 

limitations by avoiding large interval jumps and staying in a reasonable range. 

Additionally, it was able to learn rests and complex rhythms, as shown by the 

last generated example in the Results section, both of which many other 

models fail to generate. 

To begin, we had planned to train more complex models for longer and to try 

more hyperparameter combinations, but computational and time constraints 

limited our ability to do so. With regards to generation, we would also find a 

more objective metric for evaluation than simply observing results. Finally, we 

had hoped, given enough time, to apply this to ensemble music, perhaps us-

ing transfer learning in the process, and other genres/styles as well. 

[1] D. Bruce, “Free Sheet Music \& Lessons,” Free Sheet Music \& Lessons, 

2001. [Online]. Available: https://www.8notes.com/. [Accessed: 15-Mar-

2020]. 

References 

 Token 1 Token 2 Token s ... 

 Encode 1 Encode 2 Encode s ... 

Generation: 

Our classifier model was an LSTM-based network with dropout layers that, 

given an input sequence of encoded tokens, would attempt to predict the 

next token in the sequence for a song converted into such sequences. This 

was done for every sequence in every song in our dataset. The architec-

ture can be seen to the left, and we used categorical cross-entropy as the 

loss function and softmax as the activation in order to pick from all possi-

ble tokens. 

Formula and Illustrations 

Model: Categorical Cross-

Entropy Loss: 
Softmax: 

Generator Model 
Our generator model began by selecting a random sequence from the da-

taset. It then generated a specified number of notes by iteratively calling 

our classifier model, selecting the token with the highest softmax score, 

and pushing the token onto a list of outputted notes and the end of the se-

quence. This list of outputted notes was then converted back into a MIDI 

file. 


