
Graph Neural Networks in Rock-Climbing Classification
Cheng-Hao Tai (c2tai@Stanford.edu) Aaron Wu (aaron@evisort.com) Rafael Hinojosa (rahinojo@stanford.edu)

https://youtu.be/Q-77DMNKo34

OVERVIEW
Taking inspiration from the NLP domain, we 

utilized a graph convolutional network to build a 

classifier for determining rock climbing problem 

difficulties. Graph convolutional networks allow 

for each graph node to be embedded as a 

nonlinear combination of its 𝑘 hop neighbors – a 

characteristic highly desirable in our problem 

since each climbing route is directly relatable to 

other climbing routes via shared holds. Our best-

performing model achieves 0.73 AUC.

DATA
Data was sourced using Selenium from 

MoonBoard’s website. A total of 13,589 problems 

were collected and preprocessed into one-hot 

and multi-hot formats. For multi-hot, vectors are 

140-dimensional long where each dimension 

encodes presence / absence of a hold. We used 

an 80/20 ratio for train-test split.

GRAPH CONVOLUTIONAL NETWORKS
With one step of graph convolution, nodes can access information 

from 1-hop neighbors. Two steps yields 2-hop neighbors. Forward 

propagation in GCNs are:

𝐿 𝑗+1 = 𝜌 ሚ𝐴𝐿 𝑗 𝑊𝑗

Where ሚ𝐴 = 𝐷−
1

2 𝐴 𝐷−
1

2 is the normalized symmetric adjacency matrix. 

A two-layer GCN’s forward pass is 

𝑍 = softmax ሚ𝐴 ReLU ሚ𝐴 𝑋 𝑊0 𝑊1

RESULTS
Summary of experiments including baseline statistical 

models, fully-connected networks, and GCNs 

DISCUSSION
A total of 17 experiments were run to benchmark the 

GCN and evaluate its performance. We found that:

• GCN with multi-hot features outperform all baseline 

models and fully-connected networks

• GCN is less sensitive to extreme data imbalance and 

produces better predictions across the spectrum of 

difficulty classes

Confusion matrices – GCN (left), logistic reg. (right)

BUILDING THE GRAPH
A heterogenous graph is used to model the corpus of MoonBoard

problems. Adjacency between nodes are modeled as 

PMI 𝑖, 𝑗 = log
𝑝 𝑖, 𝑗

𝑝 𝑖 𝑝(𝑗)

𝑝 𝑖, 𝑗 =
#𝑊 𝑖, 𝑗

#𝑊

𝑝 𝑖 =
#𝑊 𝑖

#𝑊

#𝑊(𝑖, 𝑗) is the number of 

windows in which holds 

𝑖, 𝑗 show up

#𝑊(𝑖) is only for hold 𝑖
#𝑊(𝑗) is only for hold 𝑗

The loss function for 

this graph-based 

classification task 

applies cross-entropy 

on a subset of labeled 

nodes 𝒴𝑃

ℒ = ෍

𝑝∈𝒴𝑃

෍

𝑓=1

𝐹

𝑌𝑝𝑓log(𝑍𝑝𝑓)

𝐴𝑖𝑗 =

PMI(𝑖, 𝑗), if 𝑖, 𝑗 holds
IDF(𝑗), if 𝑖 problem 𝑗 hold

1, if 𝑖 = 𝑗
0, otherwise

Both problems and holds are 

represented as nodes on the 

heterogenous graph – (right) sample for 

a heterogenous document / word graph


