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Background

e Freezing of gait is a common symptom in Parkinson’s
disease (PD) that leads to falls and reduced mobility

e Treatment is limited due to a lack of understanding in the
neuro-biomechanical mechanisms of impaired walking [1]

e Predicting freezing of gait from neural signals would allow
for closed loop brain stimulation therapy to improve gait

Objective: Predict PD behavior state from neural data while

walking in ellipses & figures eights of turning & barrier course
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Figure 1: Neural and kinematic signals from patient walking in turning and barrier course.

Dataset & Features

e Dataset: 4.4 minutes (>100k examples) of walking data
from single patient walking around a turning and barrier

course designed to elicit freezing (Fig. 1) [2]

(data shared from the Bronte-Stewart Lab)
e Features:

o raw neural signals (voltage time series, 422 Hz)

o FFT neural signals (power time series, 4 Hz bins)

m “spec3D_beta” - beta band (12-28 Hz)

patient turning toward more PD-affected side of body

patient experiencing tremor

arrhythmicity (coefficient of variation of stride time)*

neurologist-rated identification of freezing*

part of the course walking in (figure eight/ellipse)*

e Outputs: We reframed the problem by changing the
output of our model, features marked * above were
outputs at different iterations through this evolution
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Models
Logistic Regression
Long Short-Term Memory Network (LSTM)
1-Dimensional Convolutional Neural Network (1D CNN)

Model Selection
Input: 100-sample windows of time series neural data
(varied hand-engineered forms) & behavioral trial features
Output: probability of an ellipse (0) or figure eight (1)
Binary cross-entropy loss
Parameter-tuning: 100+ experiments hand-tuning
parameters
Holdout cross-validation
Metrics
o Mean area under the receiver operating curve (AUC)
o Accuracy at optimal threshold
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Model Mean AUC (SD) | Accuracy at Optimal Threshold
Logistic Regression 0.65 (0.10) 0.60
LSTM 0.65 (0.10) 0.61
Conv32 0.62 (0.06) 0.60
Conv4 0.65 (0.10) 0.62
Conv4 with regularization 0.70 (0.08) 0.69

Table 1: Model performances and results of hyperparameter implementation and tuning

Highest-Performing Model
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Figure 2: Final 1D CNN model architecture

Input: hand-engineered features using spectrogram
analysis and field knowledge

4-filter convolutional layer with kernel size of 10,
L1 regularization, and RelLu activation

50% dropout layer during training

MaxPool layer with a pool size of 4

Dense layer with sigmoid activation
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Figure 3: Highest-performing model results.
a) Receiver operating characteristic for holdout cross-validation.
b) Average training and test losses over all cross-validation folds.
c) Aggregate confusion matrix of holdout cross-validation folds.

e Achieved mean AUC of 0.70

e Successful strategies: decreasing number of parameters;
regularization

e Challenges: overfitting noisy, small dataset; learning from
neural data

e (Obtain objective measure of freezing as output
e (Obtain more data (hours)

Video Link: https://drive.google.com/file/d/1IUHAKZOz-cXSaoCWcx8Nh6 KOQDTOVpsF/view?usp=sharing
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