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Our	method
• Decentralized: trust no one even data collector

• Data driven: do not need data distribution

• Optimize distortion given privacy constraint
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Conclusion and Future Works

• �: privacy level

• W : privatization channel (generator)

• f�: discriminator

Loss function: pixel-wise MSE �� CNN’s cross-entropy

• Proposed a data driven framework for context-aware
privacy

• Achieved better privacy-utility trade-off with
theoretical guarantee on privacy

• Can easily incorporate other utility measures

• What next: characterize the fundamental limits on
privacy-utility trade-off curves

• Local differential privacy [1]: need data distribution,
poor privacy-utility tradeoff

• Detect and perturb [2]: add random noise to sensi-
tive parts. May not achieve minimum distortion.


