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Problem Setup Learning Algorithm
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Goal: erase sensitive info S (smiling or not) from X
while minimizing distortion d(X, X)

Contribution

Related works

» Local differential privacy [1]: need data distribution,
poor privacy-utility tradeoff

» Detect and perturb [2]: add random noise to sensi-
tive parts. May not achieve minimum distortion.

Our method

» Decentralized: trust no one even data collector

« Data driven: do not need data distribution

» Optimize distortion given privacy constraint

Objectives
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Bayesian error of sensitive info. >1/2—¢

Reformulate as GAN (dual form)
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* \: privacy level
« W: privatization channel (generator)

* fw: discriminator

Training Architecture
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Discriminator

{smiling, not smiling}
Sensitive label

Loss function: pixel-wise MSE —\ CNN’s cross-entropy

Conclusion and Future Works

» Proposed a data driven framework for context-aware
privacy

Achieved better privacy-utility trade-off with
theoretical guarantee on privacy

Can easily incorporate other utility measures

What next: characterize the fundamental limits on
privacy-utility trade-off curves
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