
Generating Probability Distribution for Future Stock Prices

Computer Science

Jeffrey Sun, Shoaib Lari, Julius Zhang
CS 230 Deep Learning, Winter 2020

Abstract Introduction ResultsModels

This project
explores the
efficacy of using
softmax to generate
detailed probability
distributions for
future stock prices.
Our findings show
that such a model
can generate
realistic price
probability
distributions, with a
MSE loss of 0.0815
when predicting
among a set of 10
price change
ranges. These
results build on top
of our other
experimental
findings with
various deep
learning models.

https://youtu.be/NBXE7OOwAMQ https://tinyurl.com/stkprobdist

Output

We use historical stock market data to
predict probability distribution for stock
price for a day in future. A probability
distribution, as opposed to an expected
predicted price, lets one make a more
refined judgment call for a buy or sell
decision.

Input

We used the Quandl stock price dataset
from the Hong Kong exchange. The input
features include bid, ask, high, low prices,
P/E ratio, volume, and turnover for one full
year. This time-series data is discretized
per day, and preprocessing included
cleaning the data to fill in missing values
with the previous day's value.

The target price is the predicted stock
price for a certain day after the input time-
series. In order to normalize this target
value, it is represented as a percent
change from the current price, rather than
the nominal price.

To predict the price probability distribution
the target y value changes from a being
price change, to being a 10 dimensional
one-hot vector to indicate which range the
price change is contained in.

The loss is the mean-squared error
between the actual (target) and predicted
value.

We experimented with many different
models. Our final model has a first
convolutional layer of 20 channels,
kernel size of 7, stride of 1, with a max-
pool of size 3. The second convolutional
layer has 1 channel, with kernel size of
7, stride of 1, and a max-pool of size 3.
The third layer is a fully-connected layer
of size 84, and the fourth layer is fully-
connected of size 10, resulting in a
softmax of size 10.

This softmax-based model ran for 500
epochs, with a training rate of 0.005
using the Adam optimizer. The training
set contained 900 stocks, the dev set
contained 300, and the test set
contained 300

Below are the training, development, and test set losses for the approach with 2
convolutional layers with max pool. The train/dev/test split is 900/300/300 stocks.

Training set loss Development set loss Test set loss
0.0686 0.0826 0.0815

Below are our loss curves for various models.

Below are 5 example stocks from the test set, where the price history is shown on
the left as a reference, and the model’s predicted price distribution is shown on the
right.

