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Motivation and Project Objective Models

Conclusions and Future Work

• Power system simulation engines are essential tools for power 
grid operation and planning.

• Simulations are computationally expensive for large networks 
and utility model accuracy can be limited.

Results

Datasets and Features

Performance Metrics
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Model # of Parameters

Linear regression 𝑛𝑥 + 1 𝑛𝑦

Fully connected, L=1 𝑛𝑥 + 1 𝑛ℎ + 𝑛ℎ + 1 𝑛𝑦

Convolutional NN 𝑛𝑥 + 1 𝑛𝑦 + 9 + 𝑛𝑦
2

Convolutional Neural Network
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Fully-connected Neural Network (L=1)

Dataset:

• Generate data for each power 
network with GridLAB-D simulator [1].

Features:

• Inputs: Real power injections at nominal voltage at each bus

• Outputs: Voltage magnitude at each bus in power network

• Other information: adjacency matrix of power network and 
phase of power injections

Power 
network

Voltage 
(output) 
dimension

Power 
(input) 
dimension

IEEE 4 12 3

IEEE 13 48 22

IEEE 123 402 95

GC-12.47-1 108 9

R1-12.47-3 297 37

R2-12.47-2 2553 214

IEEE 123 bus power network topologyPower network case studies

• Normalized voltage magnitude error: worst 
case voltage prediction over all buses for 
sample 𝑖

• Mean over 𝑚 samples:

Project Objective

Baseline models: 

• Fully connected 
network (L=1,2,3)

• Linear regression

L=1

• Develop deep learning framework for learning 3-phase 
unbalanced power flow simulation outputs.

• Analyze how knowledge about network characteristics 
improves performance.

Spatial dependency of voltage 
magnitude prediction error

Timeseries voltage magnitude 
prediction (Bus 92, phase A, IEEE 123)

Prediction errors vs. training set size for all 
models

Fully-connected model: error 
vs. hidden units per layer

• Convolutional model significantly improves performance by 
accounting for the phase of the power injections and is scalable

• Error rate of convolutional model (𝜇𝜖𝑣<0.0005) is appropriate 

for many power system simulation applications.

• Future work: Complex-valued neural networks, incorporate 
voltage regulators and capacitors into deep learning model

• 82,080 samples training, 2,880 samples validation, 2,880 
samples testing.

• Calibrate power networks to be in nonlinear power flow regime.

Convolutional NN: 

• Incorporate knowledge of the phase of the power injections 
using channels and apply convolutions to learn dependencies 
between the three phases of power distribution.

Graph Convolutional Network [1]:

• Utilize information about network topology/sparsity

• Poor preliminary results due to (1) model not capturing 
spatial differences and (2) large # of layers needed to 
propagate information for large power networks.

Model Training:

• Adam optimization, mean squared error loss

• Hyperparameters: activation (tanh and ReLU), L2 
regularization, # of FC layers, # of hidden units
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• Convolutional model outperforms 
other models in almost all cases.

• Tanh activation most reliably 
produces best results.

• Training data requirements scale 
with power network size.

Power 
network

Validation 
error 𝜇𝜖𝑣

Test error 
𝜇𝜖𝑣

IEEE 4 1.103e-4 1.027e-4

IEEE 13 1.771e-4 1.718e-4

IEEE 123 9.552e-5 9.936e-5

R1-12.47-3 2.684e-4 2.586e-4

R2-12.47-2 4.627e-4 4.775e-4

Validation and test prediction errors

Presentation Link: https://youtu.be/9vA_WmSLdqY


