

Learning Power Flow Mappings for Power Grid Simulation

Presentation Link: https://youtu.be/9vA_WmSLdqY Lily Buechler (ebuech@stanford.edu) Department of Mechanical Engineering

Motivation and Project Objective

- Power system simulation engines are essential tools for power grid operation and planning.
- Simulations are computationally expensive for large networks and utility model accuracy can be limited.

Project Objective

- Develop deep learning framework for learning 3-phase unbalanced power flow simulation outputs.
- Analyze how knowledge about network characteristics improves performance.

Datasets and Features

Dataset:

Generate data for each power network with GridLAB-D simulator [1].

- 82,080 samples training, 2,880 samples validation, 2,880 samples testing.
- Calibrate power networks to be in nonlinear power flow regime.

Features:

- Inputs: Real power injections at nominal voltage at each bus
- Outputs: Voltage magnitude at each bus in power network
- Other information: adjacency matrix of power network and phase of power injections

Power network case studies

I OWEI HELWOIK Case Stadies		
Voltage	Power	
(output)	(input)	
dimension	dimension	
12	3	
48	22	
402	95	
108	9	
297	37	
2553	214	
	Voltage (output) dimension 12 48 402 108 297	

IEEE 123 bus power network topology

Models

Baseline models:

- Fully connected network (L=1,2,3)
- Linear regression

Model	# of Parameters	
Linear regression	$(n_x+1)n_y$	
Fully connected, L=1	$(n_x + 1)n_h + (n_h + 1)n_y$	
Convolutional NN	$(n_x + 1)n_y + 9 + n_y^2$	

Convolutional NN:

 Incorporate knowledge of the phase of the power injections using channels and apply convolutions to learn dependencies between the three phases of power distribution.

Graph Convolutional Network [1]:

- Utilize information about network topology/sparsity
- Poor preliminary results due to (1) model not capturing spatial differences and (2) large # of layers needed to propagate information for large power networks.

Model Training:

- Adam optimization, mean squared error loss
- Hyperparameters: activation (tanh and ReLU), L2 regularization, # of FC layers, # of hidden units

 $\mu_{\epsilon_v} = \frac{1}{m} \sum_{i=1}^{m} \epsilon_v^{(i)}$

Performance Metrics

- Normalized voltage magnitude error: worst case voltage prediction over all buses for sample *i*
- Mean over m samples:

Results

Prediction errors vs. training set size for all

- Convolutional model outperforms other models in almost all cases.
- Tanh activation most reliably produces best results.
- Training data requirements scale with power network size.

Validation and test prediction errors

Validation	Test error
error μ_{ϵ_v}	μ_{ϵ_v}
1.103e-4	1.027e-4
1.771e-4	1.718e-4
9.552e-5	9.936e-5
2.684e-4	2.586e-4
4.627e-4	4.775e-4
	error μ_{ϵ_v} 1.103e-4 1.771e-4 9.552e-5 2.684e-4

Spatial dependency of voltage

Timeseries voltage magnitude prediction (Bus 92, phase A, IEEE 123)

Conclusions and Future Work

- Convolutional model significantly improves performance by accounting for the phase of the power injections and is scalable
- Error rate of convolutional model (μ_{ϵ_v} <0.0005) is appropriate for many power system simulation applications.
- Future work: Complex-valued neural networks, incorporate voltage regulators and capacitors into deep learning model

References

[1] D. P. Chassin et al., "GridLAB-D: An open-source power systems modeling and simulation environment," in 2008 IEEE/PES Transmission and Distribution Conference and Exposition. IEEE, 2008, pp. 1–5. [1] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016