

Predicting Hierarchical Relationship in Job Title Taxonomy

Shuang Jin

Problem Statement
Goal • predict the relationship between job titles in the taxonomy.
Motivation • build a well-structured taxonomy to organize job market knowledge.
Problem Definition • given a job title entity pair (x_{source}, x_{target}) predict their relationship y .
<i>x_source</i> : Machine Learning Engineer <i>x_target</i> : Computer Software Engineer
x_target is a Broader Term of x_source.

Data

<u>Source</u>

• an established title taxonomy curated by a dedicated taxonomy team.

Train	290693	93%
Validation	18723	6%
Test	3106	1%

labels & Size

Label	Meaning	Data Size
BT	Broader Term	100K
NT	Narrower Term	100K
PT	Preferred Term	20K
NPT	Non-Preferred Term	20K
UKN	Unknown	60K

	Raw	Tokenized
Source	supply chain specialist	0 0 0 0 0 65 73 10
Target	supplier quality specialist	00000 1097 79 10
Label	NT	01000

Models & Results

 $J = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{m} J_{j=1}^{m} J_{$

Model Base Simple LSTM 64 Simple LSTM 128 Glove Glove LSTM 640 Glove LSTM 128

<u>Challenges</u>

Embedding trained from this project outperformed Glove embedding?

- **Solution**: Removing spelling mistakes

Large fluctuation on validation set performance after a few epochs?

- Learning rate set too large

One label performance significantly worse than others?

- Data imbalance

sjin1@stanford.edu

https://youtu.be/yb6EjHsbnJ8

Features

$$\sum_{j=1}^{n} \sum_{j=1}^{C} \lambda_j \cdot y_j^i \cdot \log \hat{y}_j^i$$

	Precision	Recall	F1
	77.52%	72.11%	73.66%
ld	94.63%	91.90%	93.14%
8d	93.96%	93.04%	93.44%
	77.33%	71.75%	73.27%
d	95.84%	94.70%	95.21%
3d	95.31%	94.56%	94.90%

 Large percentage of spelling errors that cannot be recognized by Glove High repetitiveness of words in training data making embedding training less difficult

• **Solution**: Calibrating on the learning rate

► **Solution**: adding class weights to loss

	Selected Mode	el		Discussion	
Glove LSTM 64d	ource Title		00	 <u>Observation</u> <u>Label Difficulty for Machine vs. Human</u>: Machine: NPT > PT > UKN > BT > NT Human: PT ~ NPT > BT ~ NT > UKN Why is UKN easy for human but not so easy for machine? Humans use knowledge such as related 	
	Embedding w/ Glove 16) (16, 100) 0 351700		řtmax (5) 825	 industries, skills, etc. to make the judgement Future Work: Mine title-related data as additional features What do humans do to get better on PT vs. NPT? 	
	Simple LSTM 64D accuracy	у 		 Humans use popularity data to compare which title is used more often <u>Future Work</u>: adding counts as new features 	
0.900 - 5 0.875 - 4 0.850 - 0.825 - 0.800 -				 What do humans do to get better on PT vs. NPT? Humans use popularity data to compare which title is used more often <u>Future Work</u>: adding counts as new features 	
0.775 - /0	5 10 15 20 25 Epoch T NPT PT UKN	30 35 40		What could be the pitfalls for the model in production? Labeled data has sector bias 	
BT 0.984 0.0	001 0.005 0.005 0.004 088 0.001 0.005 0.006	Norma		 Future Work: balancing sector data References 	
NT 0 0.900 0.001 0.005 0.000 confusion NPT 0.005 0.015 0.913 0.068 0 matrix PT 0 0.010 0.029 0.951 0.010 matrix UKN 0.012 0.012 0.005 0.015 0.956		[1] Mamadou Diaby and Emmanuel Viennet. Taxonomy-based job recommender systems on facebook and linkedin profiles. 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), pages 1–6, 2014.			
Source	Target	Prediction	Score	[2] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long	
vice president of construction	consultant sap security	URT	.9999	short-term memory (LSTM) network. CoRR, abs/1808.03314, 2018.	
director training development	head - hr & administration	BT	.9997	[3] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global	
information technology manager	senior manager human resources information system	NT	.9577	vectors for word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.	