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/ What’s new \

We aim at improving aviation safety by creating a tool capable of
assessing the risk of a developing situation in flight based on
previous reports from pilots in such situations. The novelty of
this is that the tool will work in real-time, with the pilot able to

~

a Data preprocessing

We are dealing with the categorical strings and the narrative
separately.

 Remove Nan/junk in the data

* Tokenize the data passed as categorical string

communicate with the algorithm.

.

Database

We take the data from the ASRS database: 210,000 accident
reports on every type of planes in the US.
Input data used from the report (given as string):

e Situation * Weather
* Crew Size (integer) * Flight type
* Narrative * Flight phase

We need to map every outcome of situation (e.g. aircraft
damaged, general maintenance needed) to a one-hot
encoded vector of size 5, to depict the risk categories in order
to get a classification problem.
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We tested three types of architecture:

 Sentiment score analysis of the narrative, based on
0,9*optimism calculated+0,1*subjectivity of narrative.
Outputs a float for the narrative that can be used by the
network

 Learn a word embedding for every input and pass it to the
LSTM layer further down the network

e Use a pre-trained word embedding (GloVE) for the
narrative. The other categorical text inputs still have a
trainable embedding

We use an embedding layer followed by a couple of LSTM

layers and dense layers, and the output is given by a softmax

activation.

Results/Discussion

GLoVE Prediction

After class balancing, our
o confusion matrix has improved

but isn’t as diagonal as we would
like.
As this is a safety application, we
chose recall as our primary
metric to optimize. The third
algorithm performs better in that
regard, especially for situation

with a high-risk level.
The recall numbers obtained might seem relatively low but are

due to two factors:

e High complexity of the problem: the same
circumstances can lead to different outcomes

* Relatively high Bayes/Human error for the problem
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/ Future work \

A few ways to improve our algorithm:

* Add technical data to the input, such as speed of ascent/descent,
engine revolution per minute, etc...

 The narrative used for training are in the past tense, but the pilots
in real-time would use present, thus improving the language

\ processing part could help improve the performances /
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