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Motivation
• Skin cancer is the most common form of cancer in the United States, with the annual 

cost of care exceeding $8 billion. With early detection, the 5-year survival rate of the 

deadliest form, melanoma, can be up to 99%; however, delayed diagnosis causes the 

survival rate to dramatically decrease to 23%. 

• With the availability of affordable mobile phone skin magnifier attachments, people  

living in areas with limited access to healthcare services can leverage AI to have 

access to convenient skin cancer assessment, while reducing unnecessary and 

burdensome trips to healthcare providers. 

Data
Original Data Set: The HAM1000 dataset is a large collection of multi-source 
dermatoscopic images of common skin lesions. The data set consists of 10,015 JPEG 
images which were made public through the International Skin Imaging Collaboration 
(ISIC) archive.
The images labels are stored in a CSV file and classified into 7 different disease 
categories:  Actinic keratosis(akiec); Basal cell carcinoma(bcc); Benign keratosis(bkl); 
Dermatofibroma(df); Melanoma(mel); Melanocytic nevus(nv); Vascular lesion(vasc).

Figure 2: Sample HAM1000 data set images

Original data distribution:  The HAM1000 dataset  is heavily unbalanced with ~ 70% 
of the HAM1000 data set images belonging to the Melanocytic Nevus (NV) class.

Data processing:
• Normalized and resized images  to 224 x 224 x 3 dimensions
• Shuffled images then stored them in a Numpy array on disk for faster data loading
• Split data set: 90% training set; 10% dev set
• Converted labels to stacked transposes of one-hot vectors. 

Models & Approach
Approach: Due to the small size of my data set, my strategy was to leverage 

transfer learning using CNN models pretrained on the ImageNet data set.

Models: I experimented with three different CNN architectures:

• ResNet50

Results

• MovileNetv2 

• SqueezeNet

Loss function selection:
To alleviate the impact of the unbalanced data, I used a weighted loss function that 
multiplies the cross-entropy loss function by the frequency of classes. The impact of 
using the new loss function was significant: the dev set MCA of my best performing 
Mobilenetv2 model jumped from 0.59 to 0.72.

Transfer learning configuration:
• Transfer and freeze all layers and weights except the last fully connected (FC) layer 

and the Softmax layer
• Replace the removed FC layer with different FC architectures 
• Replace the original softmax layer (1000 ImageNet classes) with a new Softmax

layer (7 classes) 
• Only train the weights of the new FC layers
• Use ReLU activation in the fully connected (FC) layers

Performance tuning parameters:
• Multiclass cross entropic loss function vs. multiclass weighted loss function
• Different FC layer architectures: 80, 160+80,, 240+160,
• Batch normalization
• Mini batch sizes: 16,32,64, 128
• # of epochs: 20, 30, 50, 100
• Learning rates: 2E-01 --- 2E-05
• Optimizer: Used ADAM only

Evaluation metric selection:
Given the  unbalanced nature of my data set, I chose to use the balanced Multi-Class 
Accuracy (MCA), i.e. balanced recall, as a model evaluation metric
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Figure 1: mobile phone skin magnifier attachment

Figure 3: HAM1000 data distribution

Figure 4: ResNet50 Architecture

Figure 5: MobileNet Architecture

Figure 6: SqueezeNet Architecture

Discussion
• The baseline Resnet50 model achieved an MCA performance ~ 70%. That’s is to 

be expected as it is easy for the model to achieve close to 70% accuracy by simply 

predicting all images to be of the dominant class (70% images belong to the 

Melanocytic Nevus(NV) class). 

• SqueezeNet model performance does not improve regardless of whatever 

architecture and hyperparameter values I tried. It seems the model is too 

small/simple to fit the data set. It is also overwhelmed by the unbalanced data.

• Using weighted loss function caused the most significant performance 

improvement. 

• MobileNetv2 is a highly performant model that beat Resnet50 with 1/10th of the 

model size.

• Unbalanced data has a significant impact on the models training-to-dev 

performance gap.

Future Work
• Try to close the variance between my best model’s training MCA (93%) and dev 

MCA(72%) using different regularization techniques (i.e. L1/L2 regularization) and 

data augmentation techniques (e.g. mirroring, cropping, etc.)

• Evaluate other mobile optimized architectures: i.e. the EfficientNet CNN 

architecture

• Collect additional data sets to help model generalize better

• Build a mobile app to test the model usability in the real world
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Figure 7: MobileNetv2 Confusion Matrix Figure 8: ResNet50 Confusion Matrix
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