Predicting subcellular organelle localization from label-free brightfield microscopy images
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Motivation U-Net Image Classification Table 1: Model metric evalutated on Test set

Combining fluorescence imaging with orthogonal imaging modali- The U-Net is a fully convolutional network Schemes Loss loU F1 loU F1

. : : . . . . . . . . : (average over classes) (nucleus only)

ties, such as brightfield imaging, can give information on cell shape which is _made up of a series of encodlpg | Different imaging modes

and subcellular structure without using molecular probes or taking up convolutional layers followed by decoding A Three-plane images 0.08477 | 0.77114 0.84612 |  0.78615 0.87966
] _ . Single-plane images 0.082248 0.77612 0.84943 0.79262 0.88383

a fluorescence channel. Here we implement a deep learning-based layers which upsamples the output to the || Siffarant locs fnciione

segmetation pipelinewhich uses brightfield images to predict sub-cel- same size as the input. Skip connections S Hybrid loss 0.085647] 0.78086 0.85228 | 0.80887 0.89389

. : . ~ copy and crop Dice loss 0.080889| 0.76105 0.83958 0.78483 0.87895
lular organelle location (nuclear and cytoplasm). We use a U-net between the encoding and decoding 1 §maxpool 2z | Focal loss 0.001512] 0.77823 0.85296 0.78522 0.87921
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CNN architecture for semantic segmentation to predict if each pixel layers allow small-scale information to I R .| D e Model areh et s 7aoaE e — E—
is in one of three classes: background, nuclear, or cytoplasmic. The pass to the Output of the network. In this ,_ T e R s S EToRE
algorithm was trained on masks that were generated using automat- way, a segmentation map comprised of
ed pixel-wise ground-truth annotation using gold-standard chemical pixel-wise classifications can be output Rl Test set Performance
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Results
We first trained models on ground truth masks from the 3-class labeling
scheme (background-nucleus-cytoplasm). To evaluate our segmentation
models, we used pixel-level intersection-over-union (loU) as the

Data
To generate our training set, we simultaneously imaged brightfield
Images and fluorescence images of nuclear stain Hoechest 33342
(for idenityding nucleus) and mitochondrial stain MitoTracker (for orimary metric given different numbers of training images or model
identifying cytoplasm). In total, we acquired 1,920 sites using a 20x architecture.
(0.75 NA) objective on a digital camera capturing 16-bit 2160x2160 VGG16
Images. Ground truth masks were generated by through traditional 081
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performance based on Number of images in training set Number of images in training set

Loss (evaluated on test set)
loU

We first trained models on ground truth masks from the 3-class la-
beling scheme (background-nucleus-cytoplasm). To evaluate our
segmentation models, we used pixel-level intersection-over-union 102
(loU) and F1 scores (harmonic mean of precision and recall) as

primary metrics.

that training with a small number of images (<500) were able to
achieve high loU, though required more epochs. This means we
might be able to train new models for different acquisition settings.
VGG16 had better loU and Loss and would be the preferred
architeture in the future.

segemntation methods of the fluroescent stains. 0 _ number of input images
| | and model Discussion
04 | architecture We found that U-net implementions were able to reproduce high
Features fidelity nuclear masks using brightfield imaging, though this wasn’t that
. 21 unexpected given other work in the field. We were surprised to find

# images in

tmﬂﬂgaset Future Directions

——128 While examining ground truth and predicted labels, we noticed that the

:?(1)24 model performs poorly on mitotic cells, which comprise a small fraction

——1500 of total cells (~5%) and display a distinct morphology. We propose to
manually annotate mitotic cells based on brightfield and Hoechst stain,

and include them as an additional label class.
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