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Motivation
 Combining fluorescence imaging with orthogonal imaging modali-
ties, such as brightfield imaging, can give information on cell shape 
and subcellular structure without using molecular probes or taking up 
a fluorescence channel. Here we implement a deep learning-based 
segmetation pipelinewhich uses brightfield images to predict sub-cel-
lular organelle location (nuclear and cytoplasm). We use a U-net 
CNN architecture for semantic segmentation to predict if each pixel 
is in one of three classes: background, nuclear, or cytoplasmic. The 
algorithm was trained on masks that were generated using automat-
ed pixel-wise ground-truth annotation using gold-standard chemical 
probes

Data
 To generate our training set, we simultaneously imaged brightfield 
images and fluorescence images of nuclear stain Hoechest 33342 
(for idenityding nucleus) and mitochondrial stain MitoTracker (for 
identifying cytoplasm). In total, we acquired 1,920 sites using a 20x 
(0.75 NA) objective on a digital camera capturing 16-bit 2160x2160 
images.  Ground truth masks were generated by through traditional 
segemntation methods of the fluroescent stains. 

Features
We first trained models on ground truth masks from the 3-class la-
beling scheme (background-nucleus-cytoplasm). To evaluate our 
segmentation models, we used pixel-level intersection-over-union 
(IoU) and F1 scores (harmonic mean of precision and recall) as 
primary metrics.

U-Net Image Classification
The U-Net is a fully convolutional network 
which is made up of a series of encoding 
convolutional layers followed by decoding 
layers which upsamples the output to the 
same size as the input. Skip connections 
between the encoding and decoding 
layers allow small-scale information to 
pass to the output of the network. In this 
way, a segmentation map comprised of 
pixel-wise classifications can be output

Results
We first trained models on ground truth masks from the 3-class labeling 
scheme (background-nucleus-cytoplasm). To evaluate our segmentation 
models, we used pixel-level intersection-over-union (IoU) as the 
primary metric given different numbers of training images or model 
architecture.
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Discussion
We found that U-net implementions were able to reproduce high 
fidelity nuclear masks using brightfield imaging, though this wasn’t that 
unexpected given other work in the field.  We were surprised to find 
that training with a small number of images (<500) were able to 
achieve high IoU, though required more epochs.  This means we 
might be able to train new models for different acquisition settings. 
VGG16 had better IoU and Loss and would be the preferred 
architeture in the future.

Future Directions
While examining ground truth and predicted labels, we noticed that the 
model performs poorly on mitotic cells, which comprise a small fraction 
of total cells (~5%) and display a distinct morphology. We propose to 
manually annotate mitotic cells based on brightfield and Hoechst stain, 
and include them as an additional label class.
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Schemes Loss IoU F1
(average over classes)

Different imaging modes
Three-plane images 0.08477 0.77114 0.84612 0.78615 0.87966
Single-plane images 0.082248 0.77612 0.84943 0.79262 0.88383

Different loss functions
Hybrid loss 0.085647 0.78086 0.85228 0.80887 0.89389
Dice loss 0.080889 0.76105 0.83958 0.78483 0.87895
Focal loss 0.001512 0.77823 0.85296 0.78522 0.87921

Different model architectures
VGG16 0.085647 0.78086 0.85228 0.80887 0.89389
efficientnetb4 0.092493 0.76835 0.84596 0.77549 0.87266

IoU F1
(nucleus only)
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Table 1: Model metric evalutated on Test set

Test set Performance 

a) input brightfield images b) ground truth nuclear marker (Hoechst) c) ground truth 
cytoplasmic marker (Mitrochondria) d) Segmentation of nucleus (gray), cytoplasm 
(white) and background black for taining) e) nuclear mask with border pixels 
separated


