Predicting Loan Grades using Deep Neural Networks

Kaushal Alate Bilguunzaya Battogtokh
Department of Computer Science Department of Computer Science
Stanford University Stanford University
kalate@stanford.edu bbatt99@stanford.edu
Liang Ping Koh

Department of Computer Science
Stanford University
lpkoh@stanford.edu

Abstract

Assigning grades to loans is an important task for lending institutions to manage
risk. However, this task can be time-consuming and expensive to do manually. This
project aims to automate this process by training and evaluating a neural network
model on a dataset of labelled loans from the online peer-to-peer lending platform
LendingClub. Our approach builds on existing work by augmenting the input with
text embeddings of text features such as loan description. We use both pre-trained
Word2Vec word embeddings and custom-trained Word2Vec embeddings. Text
embeddings do not seem to improve accuracy, a finding that will inform future
work on this task.

1 Introduction

Lenders assign grades to loans to help them manage their overall risk, set interest rates etc. Assigning
grades can be expensive, difficult and time-consuming as the human grader has to consider many
variables such as the borrower’s background and credit history. An automatic system to predict
loan grades would improve a financial institution’s efficiency and/or be a valuable verification tool
for human-assigned grades. The input to our models consists of the borrower’s socioeconomic
information such as income, loan amount requested, home ownership, debt-to-income ratio etc. as
well as three borrower-provided text features: 1) loan description, 2) loan title and 3) employment
title of borrower. The output of our model is the loan grade (one of A, B, ..., G, where A is the best
grade).

Kaushal Alate worked on a project predicting loan grades in CS221 in Fall 2018. This project takes
inspiration from that CS221 paper (which involved logistic regression, k-means clustering and a
simple neural network) but the neural network here has more hidden units, and uses word embeddings
to include the three text features mentioned above. The inclusion of more numerical and categorical
features results in a much higher accuracy of 90.2% for loan grade prediction.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

2.1 Predicting Loan Grades with a Neural Network: A Machine Learning Pipeline on AWS

This model, also trained on LendingClub data, is our baseline, though we have made many modi-
fications as described under “Dataset and Features” and “Models”. It is a two hidden layer neural
net but without any of the text embeddings we use and without much hyperparameter tuning. It
achieves 87.6% accuracy and is thus quite successful. Our work builds on this model by integrating
text embeddings for the loan “description”, “title” and (borrower’s) “employment_title” text fields.

2.2 A Neural Network Approach for Credit Risk Evaluation.

Using data from a bank in Italy, the authors used a feed-forward neural network with two hidden
layers to predict whether a small business loan will default. For their features, they focused on data
specific to the borrower, such as the borrower’s credit lines, total assets, etc. It was found in the paper
that macroeconomic variables, such as business environment, had a small impact on small to middle
size loans. Since we were working with relatively small loans made to individuals in our dataset,
we followed this paper’s advice and did not focus on adding in new macroeconomic variables. This
paper’s network architecture, with two hidden layers, corroborates what we used. It was able to
achieve a test accuracy of 91.4%.

2.3 Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and New Results.

The authors of the paper improved their accuracy in predicting corporate bankruptcies from 81.46%
to 85.5% (out of sample) for their neural net system by engineering novel new features, such as stock
price volatility and rate of change of cash flow per share. We could not have engineered these specific
features as the loans in our dataset are for individuals, but future work may involve creating new
features in a similar manner.

2.4 A data-driven approach to predict default risk of loan for online Peer-to-Peer (P2P) lending.

This paper uses two decision trees, two neural networks and one SVM to predict loan default. It
concludes that the term of loan, borrower’s annual income, amount of loan, debt-to-income ratio,
credit grade and revolving line utilization are important when predicting loan default. We infer that
these are likely also significant when predicting loan grades and have included these in our model.

2.5 The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending.

This paper performs both a survival analysis and a logistic regression analysis for each of the different
features. The survival analysis generates for different features a survival curve, which give the
probability of default at certain points in time. This could be a useful reference for future projects
that seek to predict loan risks over time. The report used seven logistic regressions using individual
features to better understand the predictive ability of each of the individual features, an approach we
could consider in future work for our dataset as well.

3 Dataset and Features

The dataset had many missing values, so our first task was to remove certain features (columns) and
loans (rows) so that we could have a dataset of complete rows. We decided to remove feature columns
which had more than 50% missing values and we then removed rows which had any incomplete
values. The choice of 50% worked well because this left us with a dataset with a good size of
63,207 loans. All categorical features, such as home ownership status, are then converted to one-hot
encodings. All numerical features were normalized by subtracting each feature’s mean from the
values and dividing the difference by the feature’s standard deviation. The training/validation/testing
split is 60/20/20% which gives 12641 loans for validation and testing each, which was thought to be
sufficient.

20000 4

15000

10000 1

5000 4

o

m = < (8] w L] w

Figure 1: Histogram showing the distribution of loan grades among the loans

4 Methods

4.1 Model without text embeddings

This model is similar to the baseline (Andersen) model but we performed some tuning (or verification)
of the hyperparameters. There are two hidden layers, both with dropout with a rate of 20% and
ReLU activation functions. The Andersen paper used regularization (the norm was capped at 3),
which we also did not change because overfitting (training error > valid error) was observed without
regularization. The Adam optimizer learning rate and the number of units in the first layer were kept
at 0.001 and 100 respectively, but the number of hidden units in the second layer was reduced from
60 to 50 (a random search strategy was used). A minibatch size of 1024 was used to make training
fast and reducing the minibatch size did not seem to increase the accuracy.

4.2 Model with text embeddings (computed using pre-trained Word2Vec word embeddings)

This model added text embeddings for the description, title and employment title text features. We
explain how these were calculated and integrated into the neural net. We tokenized each string
(description, title or employment title) by dividing on white spaces, took the lowercase of each word
and removed non-alphanumeric characters. We then found the mean of the pretrained Word2Vec
OntoNotes word embeddings for each word that is present in the string and in the the OntoNotes
embeddings dictionary, and used PCA to reduce this 300-dimensional mean vector to 50 dimensions
for faster training.

Three such 50-dimensional embeddings were calculated for each loan (for description, title and
employment title). These were concatenated with the input layer, increasing the dimensionality of the
input layer by 150. The model with two hidden layers (with the same number of hidden units, dropout
and activation functions as in model 1) was then trained. Random search again led to hyperparameter
values of 0.001 for the Adam optimizer learning rate, and 1024 for the minibatch size was used as
reducing it further did not seem to improve accuracy.

4.3 Model with text embeddings using custom-trained Word2Vec word embeddings

This model added custom-trained embeddings for the description, title and employment title text
features to model 1. First, we explain how the custom-trained Word2Vec embeddings were computed.
Briefly put, Word2Vec computes vector embeddings of words using gradient descent by seeking to
maximize the dot product of similar words. Similar words are words that occur within each other’s
“context” in a sentence, where the context of a word is the words within a fixed distance of the word
(we used the gensim package’s default distance of 5 words).

To train our word embeddings, we had to start by extracting sentences from our textual data. We
used gensim’s sentence extraction tool (whose main method seems to be splitting on periods). We
then tokenized the words of each sentence, converted to lowercase and removed non-alphanumeric
characters. Using these processed “sentences” from the loan description, title and employment title
fields, we used gensim to train our word embeddings, which we chose to make 50-dimensional for
fast training.

Like in model 2, we used these custom-trained word embeddings to compute a text embedding for
each loan’s description, title and employment title. We again used the tokenized lowercase and
non-alphanumerics-removed form of each string. We then found the mean of the custom-trained

word embeddings for each word that is present in the string and in the dictionary mapping words
(present in the training data) to the custom-trained embeddings.

Again, three such 50-dimensional embeddings were calculated for each loan (for description, title and
employment title) and were concatenated with the input layer. The other hyperparameters were kept
the same as in model 1 as trying other values using random search did not lead to noticeable accuracy
improvements, except for minibatch size which was decreased to 256 as this led to higher accuracy.

The loss function for all three models was standard categorical cross-entropy loss, given by:

C
CE =— Z tilog(si)
i
Here ¢; is the true value and s; is the score for each class i.

S Experiments/Results/Discussion

Since there are 7 classes (grades can be A, B, ..., F or G), accuracy, or the percentage of loans classified
correctly, was used as the evaluation metric and the results for the three models are summarized
below:

Model Test set
accuracy
No text embeddings 90%
Pre-trained Word2Vec embeddings 87 %
Custom-trained Word2Vec embeddings 35%

Figure 2: Table of accuracy for each model.

The graphs of loss falling over epochs are shown below for each of the three models. Each model
was trained for the number of epochs needed for loss to plateau (50, 100 and 10 epochs for models 1,
2 and 3 respectively).

- - . v v
o 10 20 30 40
epoch

Figure 3: Model 1: No text embeddings

16 Uam
valid.

epoch

Figure 4: Model 2: Pre-trained Word2Vec embeddings

loss

164 —————

epoch

Figure 5: Model 3: Custom-trained Word2 Vec embeddings

The neural network with no embeddings has the highest test accuracy of 90.2%. Integrating text
embeddings based on pre-trained word embeddings led to a test accuracy of 87%, whereas using
custom-trained word embeddings led to a test accuracy of 35%. Using custom-trained Word2 Vec
embeddings may have resulted in a severe drop in accuracy because of the relatively small quantity
of data available for training such embeddings — each of the 63,207 loans has only at most a few
sentences of description and a few words for title and employment title.

An example of an incorrectly classified loan is a D-grade loan that was classified as a B by the
no-embeddings model. It is difficult to analyze exactly why this misclassification occurred but it may
be due to the fact that the borrower’s annual income is quite high ($120,000) and the borrower owns
a home despite their debt-to-income ratio being quite high (16.57).

Another example is an A-grade loan that was classified as a B by the no-embeddings model. Again,
it is difficult to say why but the debt-to-income ratio here is rather high (8.38), although the loan
amount is relatively small ($12,000) compared to the borrower’s high annual income ($140,000).

6 Conclusion/Future Work

This project considered the effect of adding text embeddings to the existing model for predicting loan
grades. It seems that using text embeddings does not increase the accuracy of the existing model,
which is a valuable finding as it will inform future research on the topic. The relatively small quantity
of data available for training custom embeddings may be responsible for their low performance. We
were able to replicate the high accuracy of the model by James Andersen.

Future work on this task could involve trying more sophisticated computation methods for text
embeddings than finding the mean of the word embeddings — for instance, an RNN could be used
with the different words’ embeddings as inputs. It would probably be better to use pre-trained word
embeddings as there does not seem to be sufficient data for custom-training embeddings.

We might also explore different network topologies. In Angelini et al., the neural net had input
neurons being grouped into triplets and each triplet being connected to only one neuron in the first
hidden layer, which led to better test set error (4.3% as opposed to 8.6%), suggesting that instead of
fully connected layers, more restricted connections could perform better.We could also expand the
task to not just predict loan grade at one point in time, but to model the evolution of a loan’s risk over
a time period. For this, we would need to find data on loans over a period of time and use RNNG.

7 Contributions

All team members made a significant contribution to this paper. Kaushal Alate worked on training
custom word embeddings, integrating these into the neural network and writing the final report.
Bilguunzaya Battogtokh was involved with integrating pre-trained word embeddings into the neural
network, creating visualizations and preparing the poster. Liang Ping Koh was involved with
integrating pre-trained word embeddings into the neural network, dimensionality reduction techniques
and writing the final report.

8 Github Repository

Link: https://github.com/kalate/CS230-loan-grades
References

[1] Andersen, James. (8 Sept. 2017) Predicting Loan Grades with a Neural Network: A Machine Learning
Pipeline on AWS. Medium.

[2] Angelini, Eliana, et al. (Nov. 2008) “A Neural Network Approach for Credit Risk Evaluation.” The Quarterly
Review of Economics and Finance.

[3] Atiya, Amir (July 2001) “Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and New
Results.” IEEE Transactions on Neural Networks.

[4] Jin, Yu, and Yudan Zhu (2015) "A data-driven approach to predict default risk of loan for online Peer-to-Peer
(P2P) lending." 2015 Fifth International Conference on Communication Systems and Network Technologies.

[5] Serrano-Cinca, Carlos, and Begofia Gutiérrez-Nieto (2016) "The use of profit scoring as an alternative to
credit scoring systems in peer-to-peer (P2P) lending." Decision Support Systems 89.

9 Libraries

Code libraries used: Keras, Pandas, Numpy, Sklearn, Matplotlib, Seaborn, Gensim, Datetime, csv

