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Abstract

We investigate crop type classification for small holder farms in both Ghana and South Su-
dan, Africa, using temporal remote sensing imagery and deep learning methods. Our model
accommodates both multi-resolution spatial and temporal inputs to produce predictions. We
encounter challenges with sparse data labels, class imbalance, and high cloud cover, and achieve
an average F1 score and overall accuracy of 0.571 and 58.9% in Ghana, 0.774 and 84.2% in
South Sudan, and 0.892 and 94.9% in Germany, surpassing state-of-the-art performance on this
separate baseline data set.

1 Introduction

According to the UN, approximately 815 million people around the world are undernourished (2). In particular,
countries in East Africa suffer more severely in facing the hardships of food insecurity and malnutrition. Within
our study region of Ghana, 33-40% of people face chronic malnutrition in some districts (9). 74-82% of children in
northern Ghana suffer from anaemia (9), and economically, Ghana loses 6.4% of it’s GDP to child under-nutrition
(1). Ghana’s employment is dominated by agriculture, where 90% of households in northern Ghana depend on
agricultural livelihoods (9). Three of the UN’s Sustainability Goals in particular relate to these statistics and
motivate this work — zero hunger, good health and well being, and decent work and economic growth, which
may all be improved with better understanding of food systems and food security. Accurate crop type maps may
be useful for mapping cropland for food yield estimation, understanding farmer crop choice and other growing
decisions, gaining insight into interactions of crop types with environmental factors, and information on crop
diversity and nutrition outcomes.

We leverage a combination of remotely sensed data with deep learning algorithms to address our motivation
of improving food security by mapping crop type from space. We explore crop type classification in Ghana
and South Sudan specifically, where this problem is particularly relevant (9), (1), (2). Given a temporal stack
of satellite imagery over an agricultural area, we classify scene pixels into their corresponding crop types via
semantic segmentation.

2 Related work

Within this study, we explore supervised machine learning techniques for land cover classification of agricultural
crop types.

In recent years, deep learning methods have been increasingly used in crop classification over more traditional
methods (6), (7). Marc RuBwurm and Marco Koérner (10) demonstrated how long short term memory (LSTM)
cells, a type of recurrent neural network made to process sequences, could be applied to temporal crop signatures
and outperform a convolutional neural network (CNN) for the same task. They report a 76.2% overall accuracy
and 55.8% f1-score for 19 crop type classes. They later extend the work with a bidirectional convolutional LSTM
network to categorize 17 crops in Munich, Germany. They achieve an overall accuracy of 89.7% and show their
model learns to detect and ignore clouds without the need of significant cloud pre-processing (11).

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



(3) uses a simple deep fully connected neural network to aggregate information across different timestamps and
applies this method to multi-temporal Landsat data to predict maize versus soybean in Illinois. They report an
overall accuracy of 96%. (4) apply a 3D UNet for crop type mapping and achieve 95% accuracy over four crop
types. In video segmentation, (13) use a fully convolutional network as a feature extractor which is fed into a
recurrent unit cell for semantic segmentation in video, making use of both spatial and temporal features to improve
performance. Our approach has unique challenges in that smallholder farms such as those in Africa tend to have
smaller fields and sparser ground truth labels as compared to larger studies conducted in places such as the United
States and Germany. Smaller fields lead to less pixels of information, while sparse labels introduce missing data
gaps. Additionally, the growing season in our study area is dominated by rain and cloud cover, leading to low
visibility in optical imagery. Among the works that study Africa, we note that incorporating both radar and optical
information often improves performance, but that data is limited (5).

3 Dataset and Features

Through the Lobell Lab at Stanford, we were provided with sparse ground truth data for our study regions in
South Sudan and northern Ghana. Ground truth labels consist of geo-referenced polygons, where each polygon
represents an agricultural field boundary with a crop label. Labels are created as raster masks where pixels
contained within polygons have a class label that corresponds to crop type, while all other pixels outside the
labeled fields are set to zero. We use Sentinel-1 and Sentinel-2 satellite data collected over the study region extents
to relate spectral data to these label masks. Images are exported to correspond with the 2017 ground truth data, and
the number of time stamps for a scene varies from less than 16 to greater than 100 observations. Both satellites
have a 10m spatial resolution and a temporal revisit rate of 6 - 12 days. In addition to this data, we incorporate
higher spatial and temporal resolution satellite imagery from Planet Labs. Planet’s Dove Satellites have a spatial
resolution of approximately 3m, which image the entire land mass of the earth each day. With high cloud cover
and small field sizes, we believe incorporating this new satellite source will be beneficial.

We subdivide our area of interest into 32 x 32 pixel grids and split according to a 80 / 10 / 10 split for train,
validation, and test. Our splitting algorithm ensures that there is no overlap of fields in splits, and also attempts
to best preserve the relative percentages of all crops, allowing for consistent class balances in all splits. The
right-most plot in Figure 1 shows the data split that was used for Ghana.

In terms of pre-processing, we normalize all input bands to zero mean and unit variance based on statistics from
our training set. We build random data augmentation into our data loader to include both rotation and flips. As
input features, we use all ten Sentinel-2 bands (blue, green, red, NIR, four red edge bands, and two SWIR bands),
both Sentinel-1 bands (VV and VH polarizations), and all four Planet bands (blue, green, red, NIR). We also
include day of year as an input band, and construct additional bands commonly used in remote sensing. For
example, for Planet and Sentinel-2, we use NDVI and GCVI vegetation indices. For Sentinel-1, we use a ratio of
the two bands, VH/VYV, as an additional input.

4 Methods

4.1 Random Forest Baseline

To measure baseline performance, we use a random forest classifier applied to each pixel location, where a pixel
location has both spectral (the input bands from all satellites) and temporal (observations of the same plot n the
ground in time) features. Random forest is a standard method in many land cover classification studies in remote
sensing. It is an ensemble machine learning algorithm that creates a forest of thousands of sub-optimal decision
trees that we use for classification.

4.1.1 Model Architecture

Because our model input is a sequence of images, we choose to include both CNNs and RNNs within our model
architecture in an attempt to capture both spatial and temporal information. Figure 2 shows our model architecture.

To begin, each image in a time series is put through an encoder network that has shared weights between all
timestamps. The encoder uses a series of convolution and down sampling layers, with batch normalization and a
Leaky ReL U non-linearity after each convolution layer. High resolution Planet imagery is input at the top of the
network, which flows through two U-Net "tiers" before being concatenated with features from the input lower
resolution imagery from Sentinel-1 and Sentinel-2.
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Figure 1: Data set Visualizations. (Left) Data set splits for the Ghana data set. Each dot represents a field location
overlaid on a map of Ghana. Notice that splits are well distributed. (Center) A visual plot of input data. The left
column shows a time series of Sentinel-1, while the right column shows a time series of Sentinel-2 images. Rice
and maize fields are outlined in green and yellow, respectively. Note that crops are not easily differentiated by
eye. Also note that we generally use at least twenty time stamps in our models, and that only a small subset (four)
is shown here. (Right) Average NDVI of cloud-filtered pixels across time for each crop in South Sudan: maize
(yellow), rice (green), sorghum (blue), and groundnut (red). In this case, we can see visual differences between
crops, but we note that this is a smoothed out signal from all of the input data, and that the standard deviations for
each crop are very large.
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Figure 2: The model architecture used in this study.

Before features are input into the decoder network, we experiment with using both a Convolutional LSTM
(C-LSTM) (12) and attention to aggregate the relevant information within the time series.

When using the C-LSTM, the convolution features from each time step of the encoder are input to the C-LSTM
recurrent cell, a variation of the traditional LSTM, in order to capture temporal information. LSTMs take an input
x; in a vectorized form. CLSTMs, as introduced by Shi (12), convert the matrix vector multiplication in the gates
of the LSTM to a convolution operation, allowing the input x; to be a matrix instead of a vector. Specifically, the

gates become:

it = 0(Wai % T + Wh ¥ hy—1 + Wes 0 i1 + by)
fo=0(Wgsxxy + Whyxhy—1 + Wepoci—1 + by)

¢t = froci—1 + it otanh(Wye x 2y + Whe x hy—1 + bc)
0t = 0(Wao x @t + Who * hy—1 + Weo 0 ¢t + bo)
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where * is the convolution operator.



At first, we only put the bottom most encoded features through the C-LSTM. At the output of the RNN cell,
we experiment with taking both the last hidden state as well as the average of the hidden states. Upon finding
that averaging hidden states is helpful, we also investigate the use of attention. We implement two types of
self-attention to use rather than averaging, with the thought that the attention mechanism would give a more
intelligent weighted average result for further improvement.

The first type of attention we implement is based on (8), in which two matrix multiplications and intermediate
non-linearities yield the desired weights for the weighted attention summation. Within this method, attention
weights are defined as:

A= U(ngtanh(WslHT)) )

where o denotes the softmax function, which forces the weights to sum to one. In this expression, Wj; is a weight
matrix of dimensions d X u, where u is the number of hidden states in the sequence. W, is a weight matrix of
dimensions d x r where 7 is the number of attention heads we wish to use to represent the weighted signal. Since
HT has shape n x u, the resulting matrix A has shape n x r, which is used to weight each of the n hidden states,
which are them summed to yield the final representation. We implement this attention function using two fully
connected layers with weights W51 and W9 and no bias.

We also investigate self-attention as described in (14). In this case, we start with our encoded features H, which
we project into matrices of queries, keys, and values via three matrix multiplications. To get a score for the first
hidden state, we take an inner product of the first query vector with the key vectors for every sequence element.
These inner products give a weight that is used to weight the values in the value matrix V' for each time stamp.

Once we have processed all of the encoded features, the decoder uses transpose convolutions to transform the
results back up to the size of our predictions. Our model is trained end-to-end with a weighted cross entropy loss
function, where weights are chosen as a function of class balance. To handle sparse labels, we only calculate loss
on valid image regions that have labels. We mask all others and set the loss at these locations to zero.

5 Experiments/Results/Discussion

We experiment with several features and tweaks without our model architecture. After investigation, we find that
using the C-LSTM at the bottom of the "U" and averaging across all hidden states from the C-LSTM and encoding
layers produces the best results. We find that incorporation of Planet data also helps performance. Unfortunately,
neither version of attention type seems to improve results. We may need to do more hyperparameter tuning to
fully investigate if attention is useful for our model.

In terms of hyperparameter search, we search across optimization method (Adam vs. SGD), learning rate, weight
decay, number of timestamps, using loss weight, and attention type vs averaging. We find that Adam with
a learning rate of 0.001, weight decay of 0.1, 25 timestamps, use of weighted loss, and averaging produces
reasonable results across all countries with the exception of Germany where we only have the ability to use 14
timestamps due to data limitations. We may require further tuning to reach optimal performance for each country.
Since we have class imbalance, accuracy results are biased toward the dominating crops. To account for this and
to give an equal treatment to classification importance across all classes, we decide to compute the F1 score for
each class and then average to give an unweighted average F1 score.

Table 3 gives a quantitative overview of our model results compared with the random forest baseline as well as the
state-of-the-art reported metrics on the Germany data set (11). Our model performs best in both F1 and accuracy
on the large data sets in Ghana and Germany, but is outperformed by random forest on the smaller data set in
South Sudan. We hypothesize that the model was not able to perform as well due to lack of data and ability to
generalize in this case, although performance across both methods is still generally much higher than in Ghana.
We also notice a high performance across both African countries with rice. If we look back on the plots visualizing
the data in time in Figure 1 on the right-most plot, we notice that rice seems to differentiate itself the most, which
may explain why the model is able to easily differentiate the crop compared to the others.

Code is available here: https://github.com/roserustowicz/crop-type-mapping

6 Conclusion/Future Work

In conclusion, we construct a model that incorporates both CNNs and RNNs for semantic segmentation of
multi-temporal, multi-spatial satellite images. We predict crop type with reasonable performance in Ghana and
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Figure 3: Quantitative results across countries and models.
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Figure 4: Quantitative performance of our model across all countries. We surpass state-of-the-art performance on
the Germany data set and show reasonable results for both Ghana and South Sudan

South Sudan where data is limited and of poor quality due to high cloud cover, class imbalance, and lack of labels.
When applied on a large data set in Germany, we surpass state-of-the-art performance on this task. We assumed
that attention would allow our model to improve based on selective averaging of features across time, but did not
find this to be the case. We will need to run more experiments to tune possibilities of using attention within our
model. Given more time, we hope to investigate ways to improving performance in crop type mapping for small
holder farms where signal is low and labels are lacking. We would consider semi-supervised learning methods
with deep generative models, or transfer learning from larger data sets in the United States or Europe.

7 Contributions

Rose curated the Planet data set, worked on modifications to the U-Net to incorporate multi-temporal inputs,
implemented the random forest baseline, and organized and processed all necessary data for running the comparison
with the Germany data. Robin added many features to the model such as recurrent dropout, recurrent batch norm,
and variable length sequences (not shown here). Both Rose and Robin worked on adding attention to the model.
Lijing worked with baseline methods last quarter as well as work in comparing our model with a 3D U-Net
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Figure 5: Qualitative Performance in Germany (left) and South Sudan (right). Ground truth labels are in the top
row while model predictions are in the bottom row. Each color corresponds to a different crop type.




(not shown here). She also worked on incorporating the original U-Net code. Zhongyi Tang exported data for
Sentinel-1 and Sentinel-2, while all other authors contributed to other pre-processing steps. This project was
worked on as a part of the Lobell Lab and the Al and Sustainability Lab, with advisement from Dr. David Lobell,
Dr. Stefano Ermon, and Dr. Mashall Burke. We would also like to thank Burak Uzkent, and other members of the
Al and Sustainability Lab and Lobell Lab for useful discussions around this project.
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