CS230

Deep Hearing: Classifying Audio Underwater

Behrad Afshar Taha Rajabzadeh
Department of Electrical Engineering Department of Electrical Engineering
Stanford University Stanford University

bhafshar@stanford.edu tahar@stanford.edu
Jonathan Wheeler Jeremy Witmer
Department of Electrical Engineering Department of Applied Physics
Stanford University Stanford University
jamwheel@stanford.edu jwitmer@stanford.edu
Abstract

Hydrophones are underwater microphones with numerous research, commercial
and defense applications. Here, we report on a multi-class audio classifier and
investigate its performance in the context of underwater sensing. The classifier is
trained on a subset of the Google Audioset and uses transfer learning to leverage a
pretrained VGG-like audio feature extractor. The classifier achieves an F1 score of
0.764 on the development set, 0.525 on unfiltered test set audio and 0.460 on audio
that was passed through a filter simulating an underwater fiber-optic hydrophone.
Our classifier is available to try online at http://cs230.jamwheeler.com.

1 Introduction

Hydrophones are underwater sensors that measure acoustic pressure in audio frequencies, ranging
from a few Hz to tens of kHz. These sensors are often deployed on marine/submarine vessels or in
harbors to detect nearby objects or activity. The ability to classify audio signals historically has been
of interest both in maritime navigation and defense applications as well as in the study of marine
biology. In these applications, sensor arrays may be deployed in a large-area, and classification by a
human agent may be impractical. To address this, we apply deep learning to the problem of sound
classification underwater.

There are several factors which make the problem of classifying audio underwater more difficult
than in air. In particular, nearly all of audio data in the world has been recorded using microphones
that operate in air. Most people are familiar with the phenomenon that human ears perceive sound
differently underwater. In the same way hydrophones can have very different audio transfer functions
and noise environments compare to microphones in air, and this should be taken into account when
training a machine learning model.

For the audio classifier presented in this work, the inputs to the model are 10 second long audio clips.
The model then classifies the audio into one or more overlapping categories. The 6 categories, which
were chosen to represent sounds that might be encountered in a harbor or marina environment, are
Male Speech, Female Speech, Bird, Water, Engine, and Siren. Our model uses transfer learning,
leveraging a pre-trained deep convolutional network as a feature extractor, and adds convolutional
and dense layers to implement the final classifier.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

There is a substantial body of literature on the application of deep learning methods to audio
classification. A common approach is to convert the audio recordings into two dimensional (2D)
spectrograms which are then fed into 1D or 2D convolutional neural networks similar to how images
are treated in a supervised learning problem [1; 2]. Mel-frequency cepstral coefficients (MFCC),
which are power spectrograms with a nonlinear transformation of the frequency bins, are often used
to represent the data rather than raw spectrograms since they more closely mimic human perception
[1]. Another approach replaces the CNN with convolutional deep belief networks, which can lead to
improved accuracy [3].

The application of machine learning to underwater sound classification is also not a new undertaking.
For example, neural networks were already being used for real time classification of underwater audio
signals as early as 1998 [4]. More recently, Hu et al. showed that CNN features could be used to
accurately classify sounds from different civilian ships [5], and Ferguson et al. used a CNN to detect
boats in a shallow water environment [6].

3 Dataset and Features

The audio data used in our work was taken from Audioset, an open dataset from Google with over
2 million sound clips taken from YouTube videos [7]. The sound clips are 10 seconds long and
have been hand-labeled as belonging to one or more of 527 overlapping classes. The quality of the
Audioset labels and audio varies, making this a more challenging set to classify on compared to
cleaner datasets like ESC50 [2] or UrbanSound8K [8] .

During pre-processing, the raw audio clips are first resampled at 16 kHz and converted into a
spectrogram using a short-time Fourier transform with a window size of 25 ms and a window hop
of 10 ms. This spectrogram is then converted to a log mel spectrogram with 64 mel bins. The final
audio features are matrices with 64 frequency bins and 1000 time bins (100 time bins per second of
raw audio). The code to do this pre-processing was taken from Audioset Github page [9].

Frequency

50 100 150 200 250
Time Feature

(a) An example mel spectrogram. The horizontal (b) An example VGGish feature corresponding
axis represents time, in units of bins of 20 ms. to the mel spectrogram to the left. Each row is
a 128-dimensional semantic feature vector, corre-
sponding to a particular one second time interval.

Figure 1: Two-dimensional arrays corresponding to the VGGish convolutional network input (a) and
output (b).

The training set for our classifier contains 50094 examples, out of which roughly half contain at
least one positive label for one of our six classes. Our development set contains 2637 examples (of
which, roughly half contain one positive label from the six classes). For these datasets, we used
pre-computed VGGish features directly.

In order to evaluate our model’s performance on underwater sound, we have two different test sets.
The first test set is generated from 1100 unfiltered audio clips in the same way as the train and
development sets. To generate the second test set, we passed these same raw audio clips through an
analytical finite-impulse response (FIR) filter. The transfer function of this filter was designed to
very roughly approximate the transfer function of the fiber-optic hydrophones developed (see Figure
2b). Originally a third test set was planned, in which we played the same 1100 audio clips through
an underwater speaker and recorded the sound with a fiber-optic hydrophone [10]. However, the
hydrophone hardware was damaged during the recording process, preventing us from finalizing the
third test set.

Hydrophone
L

| S ‘/ .
i \a i\ 2
L AR\ -
m(L ! \ |
Wi ™
u Vi v\ .

AR | N/\

FIR filter |

sency (kHz)

(a) A fiber-optic hydrophone (on left) with a quar-

g (b) Measured hydrophone transfer function, and a
ter for size reference.

generated finite impulse response (FIR) filter.

Figure 2

In order to pass large subsets of the AudioSet through custom filters (software FIR filters as well
as the hydrophone), we set up a pipeline using several tools on Amazon Web Services (AWS). The
central component of the pipeline is a Python script that fetches a worklist of YouTube videos, with
their start and end times, from a PostgreSQL server. The script downloads the videos, optionally
passes the audio through a software filter, and computes the semantic features using the pretrained
VGGish network. This script was packaged as a Docker image file and uploaded to Amazon Elastic
Container Service (ECS). This pipeline allowed us to request tens of thousands of feature embeddings
by entering the YouTube IDs of the desired videos into the database.

4 Methods

In order to better leverage the large Audioset dataset, our model makes heavy use of transfer learning.
We use a pre-trained model provided by the Google Audioset team which they call VGGish [9][11].
This model is a variant of the VGG model, a deep convolutional network originally designed for
image classification [12]. Specifically, the VGGish model contains four groups of convolutional/max
pooling layers, followed by three fully connected layers. The output of this model is a 10x128
dimensional matrix, corresponding to a high-level 128-dimensional feature vector for every one
second time bin.

Taking advantage of the pre-trained VGGish feature extractor allows us to use a fairly simple model
for our downstream classifier. Our model consists of a single 1D Conv layer (filter size 3x128, stride
of 1, no padding, 64 filters, ReLU activation), followed by 3 fully connected hidden layers with 100
units each (ReLU activation), and a 6 unit sigmoid output layer. The initial 1D Conv layer is meant
to take advantage of the time-translation invariance of our classification problem. For example, if
there is speech present somewhere in a 10 second sound clip, the 1D Conv layer will take advantage
of the fact that it shouldn’t matter whether the speech is at the beginning or end of the clip. The
fully connected layers provide additional representational power, and the output layer implements the
multi-label classification.

During training, we minimize the binary cross-entropy loss, given (for a single training example) by

M
— Y y;log(;) 1)
j=1

where M is the number of classes, y; is the true label for class j, and §; is the sigmoid output for
class j. We use an Adam optimizer, which combines the strengths of momentum and RMSProp to
reduce jitter in the optimization process. Our model uses He initialization, and was implemented
using the Keras framework for Tensorflow.

5 Experiments, Results and Discussion

In evaluating our model’s performance, we wanted to take into account both precision and recall for
each of our 6 classes. For this reason, we chose the F1 score (the harmonic mean of precision and
recall) averaged over the classes to be our primary performance metric.

In the course of training our model, we found that some hyperparameters were especially important
to the model’s performance. For example, we found that using learning rates of 10~2 or more could
lead to very large gradients, especially in larger models, and this prevented the model from reducing
the loss effectively. In contrast, using a learning rate between 10~* and 10~3 seemed to provide
relatively fast loss convergence without introducing too much noise into the optimization.

One early decision faced was whether to use a softmax activation output or independent sigmoids.
We eventually chose independent sigmoids in order to allow the model to work on data with multiple
class labels. Table 1 shows a comparison of model performance with the two output types.

When initially building the model it was important to determine roughly how large of a neural network
was required for our classification task. This size of our model was set by two hyperparameters: the
number of filters in the 1D Conv layer and the number of units in each of the three hiddens layer. Our
approach was to start with a large neural network (eg. 256 filters, 1000 units per hidden layer, approx.
4 million trainable parameters) with no regularization and to gradually reduce the size until the model
was no longer able to overfit the training data. This would ensure that the model was sufficiently
expressive without being unnecessarily large. We found that the model stopped being able to overfit
the training data at a size of about 10,000 weights, so we chose our model size to be somewhat larger
than this. We then added dropout regularization to reduce overfitting. Dropout results are summarized
in Table 2.

For the final classifier a dropout probability of 0.5 was used and the training was stopped slightly early
to provide more fine-tuned regularization. The classifier performance on the training, development,
unfiltered test and filtered test sets is shown in Table 3. A class-by-class performance breakdown is
provided in Table 4, and a representative confusion matrix is shown in Figure 3.

Male Speech -JRES 0022 0017 0012 00025 0 021

0.8
Female Speech - 0.082 m 0019 00063 00063 0O 019
Bird - 0.0045 0 0025 00068 0016 011 - 06
z
. Water - 00066 0 0066 0.046 0 014
-]
= - 04
Engine - 0 0 0012 0027 0015 0039
Sren- 0 0 0039 0 0 0.078 -02
Other - 0073 0045 0077 003 0069 0012 ﬂ
| | | | | -00
= o = [= -
v} = [c (7] v
3 @ 5 g B £
I 2 o &
& = 5 8
w
©
=

Female Speech -

Predicted label

Figure 3: A confusion matrix for the softmax version of the classifier. The largest mis-classification
occurs between all 6 positive classes and “Other”, which represents examples with all negative labels.

Output activation: Train Avg. F1 Score
Softmax 0.837 0.761
Independent sigmoids | 0.846 0.754
Table 1: Comparing model performance with different output activations. The two output types give
very similar results. For softmax activation, a seventh “other” class was used to represent examples
with no other positive labels. For this test only, the training and dev sets were restricted to include

only examples with at most one label (no overlap between classes).

Dev Avg. F1 Score

Dropout probability | Train Avg. F1 Score | Dev Avg. F1 Score
0 0.999 0.67
0.2 0.97 0.74
0.5 0.90 0.74
0.7 0.53 0.50
Table 2: The effect of dropout regularization on the train and dev set performance. As expected,

increasing the dropout probability initially reduces the train set accuracy (reduces overfitting) while
improving the dev set accuracy. However, as seen in the last row, adding too much dropout makes
training difficult and leads to a drop in performance.

Test set: Avg. F1 Score | Avg. Precision | Avg. Recall
Unfiltered audio (Train) 0.783 0.790 0.777
Unfiltered audio (Dev) 0.764 0.787 0.744
Unfiltered audio,
run through VGGish (Test #1) 0.525 0.713 0.513
Simulated hydrophone audio, run 0.460 0.681 0.412
through filter and VGGish (Test #2)
Table 3: Summary of overall classifier performance
Male speech | Female speech | Bird | Water | Engine | Siren
F1 Score 0.353 0.476 0.581 | 0.258 0.724 | 0.756
Precision 0.563 0.714 0.439 | 1.000 0.660 | 0.901
Recall 0.257 0.357 0.861 | 0.148 .802 0.651

Table 4: Class-by-class performance breakdown for the unfiltered test set. The model performs best
for Bird, Engine and Siren sounds and significantly worse for Male Speech, Female Speech and
Water.

6 Conclusion and Future Work

We have applied deep learning to the problem of underwater sound classification. Our classifier
achieves a good performance on the development set, but its performance drops for both the unfiltered
and filtered test sets. One possible explanation is due to the presence of small differences in our local
implementation of the VGGish model compared to the model used by Google to generate the publicly
available features in Audioset (in fact, the VGGish documentation warns of this). This means the
features used for training the classifier may have come from a slightly different distribution than the
test set features, which was generated locally. Next, the decreased performance on the filtered test set
compared to the unfiltered set reflects the fact that the filter changes the input distribution, making
classification more difficult.

There are several logical next steps. First, increase the training set through data augmentation on
the raw audio files, adding background noise and combining different clips together to artificially
increase the number of examples. Another extension would be to increase the number of output
nodes in the classifier in order to classify all 527 Audioset labels simultaneously, instead of just the 6
classes addressed here. Finally, one could investigate the performance and robustness of the model
on underwater sounds by adding data recorded directly with the hydrophone to the training set. This
could also involve unfreezing some layers of the VGGish network to incorporate the new underwater
sound distribution more deeply.

7 Contributions

e Behrad Afshar

— Created a set of 7 non-overlapping classes from Google’s Audioset to be used in case
of a softmax implementation.

— Designed an FIR filter to mimic the transfer function of the underwater hydrophone

— In conjunction with Taha developed the youtube scrapper that would download the
classified data, pass them through the filter which would then be fed into the VGGish
layer

— Created a python script to play data from Audioset to the hydrophone and record and
save them as .wav files

— Tried to optimize the hydrophones’s sensitivity to achieve better SNR. Recorded 56
clips and then damaged sensor in process of re-optimizing the sensitivity

— Helped Jonathan to add live recording features to the webapp for online audio classifi-
cation
e Taha Rajabzadeh
Assisted with the development of the youtube scrapper
Assisted with the hydrophone data collection setup and sensitivity optimization
Assisted in poster creation.
Assisted in writing final report.

e Jonathan Wheeler

Authored over 4,000 lines of the codebase.

Maintenance of Makefile, requirements.txt, .env, and README.md files to standardize

environment across each of our workspaces.

Assisted in baseline modeling using Piczak Github repository.

Indexing of several hundred thousand videos with their labels. They were originally

downloaded in .tfrecord files, and a script was able to migrate them into a SQLite3

database and HDFS files.

— Set up Amazon S3 to hold tens of thousands of .wav files, and tens of thousands of
VGGish features (in .npy format). Scripts that parsed Youtube videos were able to store
their processed results on this S3 server.

— Wrote scripts to form train and dev sets. Script had to reject samples that were less than
10 seconds long, detect if Youtube videos had been removed, query based on which
labels were present, etc...

— Set up a PostgreSQL server for distributing processing jobs across dozens of jobs in
Amazon Eleastic Container Service (ECS).

— Packaged Behrad’s script that converts Youtube videos into filtered .wav files and
VGGish features into a docker image, and carried out necessary debugging to scale the
docker image many times on ECS.

— Created a web app for a live demo that allows users to upload an audio clip and visualize

it’s mel spectrogram, VGGish features, and model predictions.

o Jeremy Witmer

— Created classifier models using the Keras framework for Tensorflow. These included
both our initial exploratory Piczak model and the final classifier.

— Wrote scripts to create train/dev splits in Python, filtering examples based on class
labels.

— Supervised model training.

— Experimented with different model output activations, comparing softmax to indepen-
dent sigmoids.

— Performed hyperparameter tuning to improve model performance. Hyperparameters
investigated included learning rate, dropout probability, number of hidden layers,
number of nodes in hidden layers, and number of CNN filters.

— Performed model testing using metrics from scikit-learn (F1 score, precision, recall,
confusion matrix).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, C. Moore, M. Plakal,
D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. Weiss, and K. Wilson, “Cnn architectures for

large-scale audio classification,” in International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017.

K. J. Piczak, “Esc: Dataset for environmental sound classification,” in Proceedings of the 23rd
ACM international conference on Multimedia, pp. 1015-1018, ACM, 2015.

H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learning for audio classifica-
tion using convolutional deep belief networks,” in Advances in neural information processing
systems, pp. 1096-1104, 2009.

C.-K. Tu and H.-C. Huang, “Application of neural-network for real-time underwater signal
classification,” in Proceedings of 1998 International Symposium on Underwater Technology,
pp- 253-257, IEEE, 1998.

G. Hu, K. Wang, Y. Peng, M. Qiu, J. Shi, and L. Liu, “Deep learning methods for underwa-
ter target feature extraction and recognition,” Computational intelligence and neuroscience,
vol. 2018, 2018.

E. L. Ferguson, R. Ramakrishnan, S. B. Williams, and C. T. Jin, “Convolutional neural networks
for passive monitoring of a shallow water environment using a single sensor,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2657-2661,
IEEE, 2017.

J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal,
and M. Ritter, “Audio set: An ontology and human-labeled dataset for audio events,” in Proc.
IEEE ICASSP 2017, (New Orleans, LA), 2017.

J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound research,” in
Proceedings of the 22nd ACM international conference on Multimedia, pp. 1041-1044, ACM,
2014.

Google, “Models for audioset: A large scale dataset of audio events.” https://github.com/
tensorflow/models/tree/master/research/audioset, 2018.

B. H. Afshar and M. J. Digonnet, “Lens-less, spring-loaded diaphragm-based fiber acoustic
sensor,” in Optical Fiber Sensors, p. WD6, Optical Society of America, 2018.

S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, C. Moore, M. Plakal,
D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. Weiss, and K. Wilson, “Cnn architectures for
large-scale audio classification,” in International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

