Reconstructing Pore Images Using Generative
Adversarial Networks

Kelly Guan
Department of Energy Resources Engineering
Stanford University
kmguan@stanford.edu

Abstract

Estimating rock porosity and permeability is a vital component of reservoir engi-
neering and is often done through laboratory measurements or direct imaging of
the microstructure. Images are reconstructed from 2D or 3D datasets and used for
modeling flow within the rock structure. Recent advances in deep learning have
made using GANSs a potential method for rapidly generating multiple realizations
of a rock sample. In this project, we investigate how changing the loss function
for a 2D DCGAN affects image quality and morphological parameters such as
porosity, perimeter, and Euler characteristic. We also present progress towards
training a 3D model to generate inputs for calculating permeability.

1 Introduction

Understanding fluid flow in porous media at the microscale is relevant to many fields, such as oil and
gas recovery, geothermal energy, and geological CO, storage. Properties such as porosity and perme-
ability are often calculated from laboratory measurements or direct imaging of the microstructure.
However, due to acquisition times and experimental costs, it is difficult to evaluate the variability
of these properties due to rock heterogeneity. Instead, researchers often use statistical methods to
reconstruct porous media based on two-point or multi-point statistics [? ?]. Reconstruction using
these methods often requires knowledge about the pore and throat size distribution before and can be
costly to generate multiple realizations of the same rock sample.

Recent advances in deep learning have shown promising use of generative adversarial networks
(GANGs) for rapid generation of 3D images with no a priori model [1, 2, 3]. Last quarter, we created a
2D Deep Convolutional GAN to generate 2D reconstructions of a binarized dataset of a sandstone
sample, as shown in Fig. 1 [4]. The accuracy of the reconstructed images were evaluated against real
images using morphological properties such as porosity, perimeter, and Euler characteristic. This
project aims to extend the work to create and train a 3D GAN to generate 3D reconstructions of a
pore network and then evaluate the effect of varying hyperparameters or the network architecture.

While training the 3D was much more difficult than anticipated, we were able to investigate the
effects of changing the loss function, specifically by adding a gradient penalty term, in the 2D case.
Current 3D GAN techniques in the field have focused on DCGANSs or conditional GANs that use
higher resolution, 2D images as the conditional input [5, 2, 3]. Previous research has shown the
potential of improving either training stability or image quality by modifying the loss function of the
GAN [6].

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

256x256 N

Training images -
Label =1 i

Original 4 !
dataset Discriminator (D) I
black=solid o 5 tl "
hite= utput:

Generator (G)

4
— =
+

Synthetic images

Random Label =0

noise (z)

Figure 1: High level architecture of 2D DCGAN built previously. The original dataset is subsampled
into multiple 64x64 sections for training.

2 Dataset and Features

The dataset was obtained from micro-x-ray tomography scans of a Bentheimer sandstone. The
original data is a greyscale representation of the 3D solid, and has been processed and binarized into
the pore and solid phases. The full dataset is 5123 voxels large with a voxel size of 3.06 pm. In order
for the training image (64 x 64 voxels) to capture an adequate area, the image was downsampled to
2563 voxels with a voxel size of 6.12 pm. For data augmentation, subvolumes were extracted every
16 voxels to yield 24, 384 training images. For the 3D case, a similar process was performed to extra
12,195 training images with a size of 64 x 64x64 voxels.

The images are loaded and normalized between [—1, 1] prior to training. Batch normalization is done
on sets of mini-batches of real and fake images. The model weights are randomly initialized from a
normal distribution with 4 = 0 and o = 0.2. Two separate Adam optimizers are used to optimize
D and G. A one-sided label smoothing was also applied to the true label (1) as it has shown to
improve model stability [7]. Parameters such as the learning rate and label smoothing were varied to
investigate the effect on training stability and accuracy. Table 4 shows the network architecture and
Table 2 shows the parameters that were used for the 2D case. The 3D architecture is similar, with the
convolutional and convolutional transpose layers in 3D instead. The number of discriminator filters
was reduces from 64 to 16 for the 3D model in order to speed up training.

3 Methods
Table 1: Generator and discriminator architecture

Layer Type Filters Kernel Stride Padding Batch Norm Activation
Generator
1 ConvTransp3D 512 4x4x4 1 0 Yes ReLU
2 ConvTransp3D 256 4x4x4 2 1 Yes ReLU
3 ConvTransp3D 128 4x4x4 2 1 Yes ReLU
4 ConvTransp3D 64 4x4x4 2 1 No Tanh
Discriminator
1 Conv3D 64 4x4x4 2 1 No LeakyReLU
2 Conv3D 128 4x4x4 2 1 Yes LeakyReLU
3 Conv3D 256 4x4x4 2 1 Yes LeakyReLU
4 Conv3D 512 4x4x4 1 0 No Sigmoid

The architecture follows the architecture described in [8] with the number of channels modified to be
1 (binarized image) instead of 3 (RGB)

To train D and G, we used two different loss functions. We first use the binary cross entropy loss
function (model DCGAN-1). Training is performed in two steps: 1) train the discriminator to

Table 2: Data parameters

Image size 643 voxels
Batch size 64
Size of z latent vector 100
Generator filters 64
Discriminator filters 64
Learning rate, o 2x107°
Label smoothing, ¢ 0.2

Parameters used for training. Label smoothing refers to replacing the class label of 1 by 1 — e.

maximize
EzNPdata(z) [log D(JS)] + Ezwpz(z) [IOg(l - D(G(:E))] (1)
while keeping the generator fixed, and 2) train the generator to minimize
Eznp.(2)[log(l — D(G(2))])

while keeping the discriminator fixed. In practice, due to the effect of vanishing gradients, it is easier
to maximize E...,_(,)log(D(G(z)) instead.

A gradient penalty term was also applied to the vanilla DCGAN, as it has been shown to improve
image quality and prevent the discriminator from overfitting.

minmax By, () [10g D(z)] + By) log(1 — D(G())] + AE[(IV2 D@2 1] ()

We also investigate the effect of using the Wasserstein distance as the loss function instead (model
DCGAN-2). The primary advantages of using the Wasserstein loss are that it can prevent mode
collapse in the generator and allow for better convergence. The Wasserstein distance measures
the distance between two probability functions and the discriminator now becomes a "critic" that
evaluates the Wasserstein distance between the real and synthetic images. The distance is calculated
by enforcing a Lipschitz constraint on the critic’s model, either through weight clipping or a gradient
penalty [6]. In our model, we use a gradient penalty to enforce the Lipschitz constraint which results
in the following value function,

minmax Eypy o @) [D(@)] = Eznp. () [D(G(2))] + AB[([[V2 D(2)|2 1)?] “

4 Experiments/Results/Discussion

Model Pore area Perimeter, x10~2 Euler characteristic, y x 10~¢
Train set 184+7.8 6.94 —-3.89
DCGAN 21.6 7.7 6.82 —4.28
DCGAN-GP 20.2+8.1 6.87 —4.01

Gradient penalty norm Pore area, %

1 20.2£8.1
0.5 21.7£75
0.25 20.3+£7.38

The first step was to modify the code for the 2D GAN to a 3D version. The main issues that occurred
were 1) saving the data in a different format (hdf5 vs. png) and loading it appropriately and 2)
memory issues when running the training loop.

Generator and Discriminator Loss During Training

16 1

el]
14 - — D
12.
| 1
mlo l 2
g§° |
6.

'S
- W

50b0 10600 15000 20000 25000 30000 35000
iterations

o4

Figure 2: Discriminator and generator loss function over 60 epochs for 36,864 training images.
Numbers correspond to sequence images shown to the right

Possible solutions to the first problem is looking more closely at the documentation of working with
hdf5 files, as there have been reported issues when using it with a dataloader with more than 1 worker.
To progress with training, another smaller subset of .png formatted images are being created as this
has been shown to work previously.

5 Conclusion/Future Work

For the second issue, one approach can be to reduce the batch size from 64 images to 32 or 16 when
training. Or, downsampling the training image size from 643 voxels to 323. The major disadvantage
of downsampling, however, is that important features of the image may be lost. Reducing the batch
size will also affect training of the model, but previous work in 2D has shown that the model will still
train properly, as shown in Figure ??

Finally, it is important to establish a working baseline model. Previous results showed that using
a log loss yielded visually and morphologically similar images from the generator. When training
with a Wasserstein loss function, early attempts showed that the discrminiator loss (and generator
loss, not shown), would blow up over training time, shown in Figure ?? and yield noisey, unrealistic
images. Possible reasons are due to the binary nature of the input image, so adding Gaussian noise
could improve training. The next steps to be done on this project are to 1) train the 3D model using a
smaller batch size and 2) improve the baseline model using the Wasserstein distance.

6 Acknowledgements

Thanks to Tim Anderson and Prof. Anthony Kovscek for their guidance on this project. Part of
this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National
Science Foundation under award ECCS-1542152.

References

[1] Lukas Mosser, Olivier Dubrule, and Martin J. Blunt. Reconstruction of three-dimensional porous
media using generative adversarial neural networks. Physical Review E, 96(4), 2017.

[2] Junxi Feng, Qizhi Teng, Xiaohai He, and Xiaohong Wu. Acta Materialia Accelerating multi-
point statistics reconstruction method for porous media via deep learning. Acta Materialia,
159:296-308, 2018.

[3] Denis Volkhonskiy, Ekaterina Muravleva, Oleg Sudakov, Denis Orlov, Boris Belozerov, Evgeny
Burnaev, and Dmitry Koroteev. Reconstruction of 3D Porous Media From 2D Slices. pages
1-15, 2019.

[4] Kelly Guan. Reconstructing pore networks using generative adversarial networks.
http://cs229.stanford.edu/proj2018/report/222.pdf. 2018.

[5] Lukas Mosser, Olivier Dubrule, and Martin J. Blunt. Stochastic Reconstruction of an Oolitic
Limestone by Generative Adversarial Networks. Transport in Porous Media, 125(1):81-103,
2018.

[6] Ishaan Gulrajani. Improved Training of Wasserstein GANs.

[7] Tim Salimans, Ian Goodfellow, Vicki Cheung, Alec Radford, and Xi Chen. Improved Techniques
for Training GANs. pages 1-10.

[8] Nathan Inkawhich. DCGAN Tutorial.

