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Abstract

The process to coordinate rescue and relief efforts after a disaster is generally man-
ual and time consuming. Manual inspection of aerial imagery is an improvement
upon that, but is also slow and error-prone if the impacted area is expansive. We
propose a two step Convolutional Neural Network (CNN) framework that identifies
buildings in affected areas and determines whether or not they are likely to be
damaged. This framework improves upon existing work by identifying damaged
structures from raw aerial imagery without requiring heuristic based methods for
detection and combining that with building damage evaluation. We apply this to
Hurricane Maria, which damaged more than a third of the homes in Puerto Rico.

1 Introduction

After a crisis or natural disaster occurs, relief mobilization usually begins by deploying large rescue
teams to perform windshield surveys. Quickly identifying impacted areas is a crucial problem when
deciding where and when to send aid and focus rescue efforts, potentially saving lives or further
infrastructural damage. Our project aims to address this with automatic damage assessment.

The input to our CNN-based framework is a raw aerial RGB image. The final output is a set of
building bounding boxes and a binary label indicating whether or not the building in the bounding box
is damaged. Our framework is split into two components: building detection and building damage
classification. The aerial image is fed into a CNN object detection model, which outputs bounding
boxes around buildings. The bounding boxes are used to crop out images of the individually detected
buildings in the input and then fed to a CNN classification model to output labels of damaged/not
damaged.

2 Related work

This problem has been approached from a few different perspectives using deep learning techniques,
but they have focused on individual stages of the building damage analysis problem. In Doshi et.
al. [9], larger "grid" areas are classified as damaged or not damaged based on the pixel difference
between satellite images before and after the disaster. With each pixel classified as building vs
non-building, they rely on significant pixel differences before and after the disaster, which may not
occur when some structural damage occurs but buildings are still standing, or where their original
segmentation is not accurate, as represented in their results. To compensate for this, the authors
split images in grids, which they manually annotated and then evaluated damage within. Another
approach developed by Cao et. al.[7] focused on individual building damage classification, which
takes images of single buildings and then classifies them as damaged or not damaged. The dataset
they used was from Hurricane Harvey. However, this relies on having pre-processed satellite images
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that contain only one building. They reported exceptional results, however upon inspection, their test
images of damaged buildings had surrounding brown flood water, which is not the same as our case.
The contribution of our paper is to combine both of these approaches and have a framework go from
unprocessed imagery to building extraction and damage classification.

3 Dataset and Features

As we could not find a single dataset with building outlines, building images, and damage coordinates,
we combined several data sources into a unified dataset to use throughout the framework: raw aerial
RGB imagery taken soon after Hurricane Maria landed in Puerto Rico [16], Puerto Rico building
footprints [4], and damage coordinates after Hurricane Maria, as assessed by FEMA [6]. Additionally,
the building detection model included aerial building footprint imagery in Christchurch, New Zealand
from Aerial Imagery for Roof Segmentation [8] We also processed a satellite imagery from Digital
Globe [1], however it needed significant further manual processing as most tiles were either too blurry,
covered in clouds, or required significant orthorectification. As such, the aerial imagery ultimately
used in this paper is solely from NOAA and AIRS.

g Partition Join w/ Convert to pixel-
Imagery [4] sl to smaller [l building Bl coord bounding
- tiles footprints boxes

Partition Filter
Compress & to smaller i zero-band
tiles & cloudy

3 é,k‘? 5 <7
o2 2l I

RN R

Building Mask raster Visua)
bounding I to only keep .

boxes buildings nspection

Figure 1: Creating a dataset based on Hurricane Maria and Puerto Rico.
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The original GeoTTF tiles available from NOAA are 20,000 x 20,000 pixels. In order to process
them more efficiently, we compress and retile them into smaller 1,024 x 1,024 pixel images. We
then filter the resulting tiles to remove blank images,. All tiles retain geocoding data, so we can map
each tile to its corresponding lat/lon bounding box and to the crowdsourced OpenStreetMap building
footprints from [4]. For damage ground truth, we downloaded GDB vectors with observations from
a FEMA [6] assessment, including coordinates the location and level of damage. Joining all data
sources together gives us tiles annotated with a variable number of buildings for building detection,
and smaller images with one building per image labeled as either damaged or not damaged.

3.1 Building detection

The building detection training set also included the AIRS dataset, consisting of 951 tiff images
containing 220,000 buildings with corresponding bitmasks to represent the building footprints. Each
image is 10,240 x 10,240 pixels. Each image contains many buildings, so we tile the images into 16
equally sized compressed images, each 2560 x 2560 pixels, leading to 15,216 images.

We converted the bitmasks to bounding boxes using connected components with scikit-learn [17] and
taking the minimum and maximum x,y coordinates with a margin of 10 pixels on each side, as the
classification model can benefit from the surrounding appearance in detecting damage, as seen in [7].

We split the NOAA dataset into 18,767 images for the training, 2000 for the validation, and 347 for
the test set. With the AIRS data, the training set has a total of 33,983 images. The test set contains
only 347 images to maintain a balanced set of damaged and non-damaged buildings and after filtering
for destroyed buildings, we were only able to obtain these test images. We decided to use 480 x 480
for the detection model due to the resolution that it preserves, while also fitting in memory and the
smaller input size for the classification model, since it is a smaller portion of the overall image that
contains one building.

3.2 Damage Classification

The damage classification dataset consisted of 128 x 128 pixel images containing a single building,
derived from NOAA as above. In order to include some of the surroundings from each building, we
crop a rectangle shape with a shapely [10] radius parameter of 0.00024 over the building footprint.



Each building image is labeled as either damaged or not damaged given the coordinates from [6].
Unfortunately, the labels from FEMA were not very accurate; there were clearly damaged buildings
that went unreported by their visual assessment. Because of this, we visually assessed the dataset and
removed images that were mislabeled or we could not visually identify as damaged or not damaged.
The resulting dataset was of 2406 buildings for training, 428 for validation, and 384 for test. As there
were more non-damaged buildings in the overall dataset, all train/validation/test sets consist of 60%
damaged and 40% non-damaged buildings.

4 Methods

We run two CNNSs in succession, one for building detection and another for building damage
classification. The aim of the first model is to output a set of bounding boxes for individual building
extraction. These can be used to mask the original aerial rasters and create smaller images containing
only one building, to be classified as either damaged or not damaged by the second model.

4.1 Building Detection

The object detection detection model we use is a RetinaNet [14] with a ResNet101 [11] backbone.
RetinaNet [14] consists of a backbone network and two convolutional subnetworks. The backbone
network has a Feature Pyramid Network [13] built on top of it and extracts a convolutional feature
map from the input image. The two subnetworks are both fully convolutional networks used for
classification and bounding box regression. The loss function unique to this model is called the
focal loss, which tries to address the issue of the heavy class inbalance between class objects and the
background class in images and is used for the classification subnetwork. In practice it is weighted
by a term o, and defined as:

FL(pt) = —as(1 — p¢)ylog ps.

where, p; equals p, the predicted class probability, if the label equals the class of the example used
for prediction and 1 — p otherwise. The bounding box regression subnetwork uses a smooth L1 loss,
defined as
1.2 :
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We used the a default framework value of 3.0 for §. The total loss is the sum of the focal loss and
smooth L1 loss.

Our implementation uses a RetinaNet provided by the computer vision company Fizyr [3] and
pretrained on the ImageNet dataset. It is implemented in Keras [2] with a Tensorflow [5] backend. We
transfer learned on our combined training dataset of the NOAA Hurricane Maria and AIRS datasets
and retrain the entire model. We attained improved mAP using both datasets, 0.49 vs 0.43 with only
NOAA. We also visually inspected the results and found that including the AIRS images improved
the true accuracy of the bounds since the NOAA dataset had many misaligned bounding boxes and
those in the AIRS dataset’s bounds were systematically more accurate. The images from the two
datasets look visually similar.

We also decided to retrain the entire network after experimenting with retraining only the subnetworks,
as seen in Table 1 with the frozen backbone.

4.2 Damage Classification

As a baseline, we use the CNN architecture and pre-trained model developed by Cao and Choe
[7]. The model was trained on images containing a single building from satellite images taken after
Hurricane Harvey in Houston, which makes this a very similar task to ours. However, the damage
extent between Hurricanes Harvey and Maria and the infrastructure in Houston and Puerto Rico
differs enough that this baseline model has an accuracy of 61.4% on our test set.

The baseline model has four convolutional layers with a ReLU activation function, followed by
two fully-connected layers and an output layer with a sigmoid activation function. It is trained on
10,000 images using Adam optimization with mini-batches of size 20 and learn rate of 0.001, 50%



dropout, and L2 regularization in the fully-connected layer with v = 1075, It uses accuracy as the
performance metric and a binary cross-entropy function to compute loss, defined as

L(y,y') = = > (yilog(y:) + (1 — y;) log(1 — v;))-

K2

After running several transfer learning experiments on this model, we arrived at the architecture
below for the second stage in our framework. Given our small dataset and the relatively poor baseline
performance on our test set, making the network deeper with an additional fully-connected layer
resulted in a significant performance boost. The convolutional layers have the following dimensions:
148x148x32, 72x72x64, 34x34x128, and 15x15x128, with 3x3 convolutions and 2x2 max-pooling.
The output is then flattened onto a layer of 6272 nodes, followed by a 1024 dense layer, another 512
layer, and finally the output layer with a 1D label vector. To address overfitting, we use a 0.5 dropout
at every CONV/MAXPOOL layer and following the first two fully connected layers.

Figure 2: Damage classification model architecture.

5 Experiments & Results

5.1 Building Detection

We experimented with different RetinaNet backbones, which portions of the model to update in
training, batch sizes, learning rates, anchor boxes and training datasets to use when training the
RetinaNet model. We chose to focus on the RetinaNet [14] model due to its demonstrated advantages
in accuracy over the current state of the art two-stage detection models, such as variants of Faster
R-CNN [19] and Feature Pyramid Networks [13], while maintaining the speed of previous one-stage
models, such as YOLO [18] and SSD [15]. The best performing model from our experimentation
had a ResNet101 backbone with batch size of 2, learning rate of 0.0001 with decay when the loss
plateaued, and training data consisting of the NOAA and AIRS datasets.The metric we used to
evaluate this model was mean average precision (mAP), which is the mean across all classes of the
average precision of the predicted bounding boxes ranked by predicted class confidence with a correct
bounding box if the intersection of union, IoU, threshold is met. [12]. We used a threshold of 0.25 for
the IoU. The rationale behind this and the bounding box margin mentioned previously was that we do
not need very precise bounding boxes. We care more about obtaining the detection, since we add
a margin when cropping out the individual buildings. For backbone network selection, we focused
on ResNet [11] due to the easier training of a large network provided by the residual connections.
We experimented with ResNet50 and ResNet101 and whether or not to freeze the backbone of the

ResNet101 | ResNet50 | Frozen ResNet101
Total loss 1.5277 1.6626 1.8822
Regression loss 1.2484 1.3483 1.5300
Classification loss | 0.2793 0.3143 0.3522

Table 1: RetinaNet Backbone: ResNet101 vs ResNet50 vs frozen ResNet101, 20 epochs, Ir=1e-4

network during training. As seen in Table 1, the non-frozen ResNet101 attains lower loss, which
is expected since it is a larger model and we have sufficient training data. We did not see issues of
overfitting when using the full training dataset, with both training and validation mAP converging to
about 0.743, using the 0.25 IoU threshold, and to 0.493 when using the 0.5 IoU threshold.

The batch size of 2 was constrained by being the largest batch size we could use before running out
of memory on a Quadro P1000 GPU. Training with a larger batch size of 8 and 16 on a CPU took
much longer to train. We tested a few learning rates, and decided upon le — 4 since that gave a final



loss of 1.569, while le-5 gave 1.932, 1e-3 did not not converge, and le-6 was too slow to converge
and stopped.

After training our final model, with the hyperparameters mentioned above, for 20 epochs, the total
loss loss, classification loss, regression loss oscillated around 1.523, 0.2793, 1.2484 respectively,
while the validation mAP converged to 0.743 with the 0.25 IoU threshold. The results can be seen in
Figure 3. Figure 4 shows an example of the inference output on an image from the NOAA validation
set (red are predicted, green are labels). Visually it appears to capture most of the buildings. In
images where the performance is not as good, we find blurry images, tall sky scrapers or very large
buildings and generally buildings with significantly different appearances. This may be due to the
their scarcity in the training set.

validation mAP and total loss

"SR

S L L - Figure 4: Building detection infer-
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Figure 3: Training loss and validation mAP predictions; green are labels

5.2 Damage Classification

We applied transfer learning on the baseline model using the Keras library [2] with TensorFlow
backend on an NVIDIA K80 Tesla GPU with 26GB memory on a quad-core CPU machine. We
started by freezing the convolutional base in the baseline model and re-initializing the top fully
connected layers, then training with Adam (learn rate 0.001) with mini batches of size 32. As in the
original model [7], the original 128 x 128 pixel images are projected onto 150 x 150 pixel images as
input to the model to account for geo-feature to pixel inconsistencies. We also experimented further
training the last convolutional layers, using the original baseline weights as initialization values.

Our original dataset used a "zoom" shapely [10] envelope radius parameter of 0.00016 around the
building footprint ground truth, which proved to be too close to the building as tuning schemes
resulted in little improvement. A radius parameter of 0.00024 yielded building images of similar
proportions as those used to train the baseline models, and significantly improved performance. As
our training and validation sets are very small, the fully connected layers were prone to overfitting.
To address this, we added on-the-fly data augmentation using Keras’ ImageDataGenerator and an
additional dropout stage (with dropout of 0.5) in the fully-connected 1024 layer. As this is a relatively
small model on a small dataset, we were able to iterate quickly and perform numerous experiments, a
subset of which is summarized below. We chose the model with 3 fully-connected layers and 3 frozen

Data Augmentation | Zoom FC Layers Frozen CONV | Epochs | Accuracy | F1

No 0.00016 | 2 4 100 53.9% 61%
Yes 0.00016 | 2 4 100 52.9% 58%
Yes 0.00024 | 3 (addtl Dropout) | 3 100 80.5% 84.1%
Yes 0.00024 | 3 3 100 83.3% 86.3%
Yes 0.00024 | 3 3 200 83.6% 86.7%
Yes 0.00024 | 3 2 100 83.9% 87.6%
Yes 0.00024 | 3 3 400 84.1% 86.8%

Table 2: Damage classification model experiments sample results. Columns: whether data augmenta-
tion was used or not, shapely zoom radius parameter when extracting building images from original
rasters, number of fully connected layers at top, number of frozen convolutional layers, number of
train epochs, and resulting accuracy and F1 scores.

convolutional layers as our final model, given it has the highest accuracy at 84.1% and lowest loss of
0.4. It has an F1 score of 86.8%, recall of 89.3%, and a 84.5% precision. Interestingly, the model
in which only two convolutional layers were frozen (meaning the last two conv layers were further
trained) has a higher F1 score due to its high recall of 97%. We decided to favour the higher accuracy



model given this model’s much lower precision of 79.6%. We also experimented using RMSProp
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Figure 5: Training and Validation Accuracy Figure 6: Training and Validation Loss

instead of Adam as an optimizer, however it resulted in noisy learning and a lower validation accuracy
plateauing around 68%.

6 Discussion/Conclusion/Future Work

We found that combining two CNN model performing different tasks to ultimately achieve one
objective can yield positive results. However, performance would likely have been better with more
training data. Raw satellite imagery requires a non-trivial amount of pre-processing and visual
inspection for which we did not have enough resources nor time. We chose Hurricane Maria to test
current literature performance on a different environment (climate and infrastructure) than those
previously evaluated (mainland US). Damage classification base model performance was poor in
spite of similarity of the task; however, transfer learning on images from new environment proved
effective. A greater diversity of disaster types and environments would make the model more robust.
This deep learning technique can have a big impact in helping first responders identify first-pass,
worst-hit areas immediately following a disaster.

We found that the best performing algorithm for the building detection was a RetinaNet with
ResNet101 backbone, learning rate of 0.0001, achieving a mAP@0.25 of 0.743 and mAP@0.5 of
0.493. As for damage classification, our best performing experiment yielded an accuracy at 84.1%
and loss of 0.4, with an F1 score of 86.8%.

Regarding future work, gathering more data and cleaning the dataset further is the next step that we
would take. Misaligned bounding boxes, blurry resolution, and blank portions that still had ground
truth building bounding boxes likely affect the model performance. We noticed this when replacing
DigitalGlobe dataset with the cleaner NOAA dataset. Additionally, the damage labels from FEMA
were unreliable, as many buildings that were clearly destroyed were not included in their damage
assessment. Further improvements can also be made on both the building detection model as well
as the classification model, such as training more complex networks for the two subnetworks of
RetinaNet and testing other architectures for the classification model, both using more computing
resources.

7 Contributions

Richard experimented with and trained the building detection model. Angelica tested different
architectures and trained the damage classification model and designed the poter. Both authors
contributed to the image data preprocessing for the aspects related to our respective components, such
as bounding box conversion, individual building crop extraction, and tiling and filtering the NOAA
and AIRS datasets. Source code can be found at https://github.com/chardch/DisasterDetection/.
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