Unearthing Crop Insights: Plant Seedling
Classification Using a Dense Convolutional Neural
Network

Jacqueline Ennis
Stanford University
jgennis@stanford.edu

Abstract

Leveraging computer vision
for precision agriculture has
the potential to transform com-
mercial agriculture by offset-
ting both the cost and en-
vironmental impact of herbi-
cides. Some attempts have
been made to apply CNN’s
to classify cultivation crops
from weeds, namely a robot
capable of real-time segmenta-
tion at 91% accuracy, but none
have leveraged the suite of
powerful pre-trained networks
trained on ImageNet and op-
timized for visual recognition
tasks. We propose a convo-
lutional neural network model
to perform 12-class classifica-
tion of close-up images of crop
seedlings and weeds. After
applying transfer learning to
train on the pre-trained weights
of DenseNetl121, VGG16, and
ResNet50, we find that the
model still performs best, with
an F1 score of 74.85. Finally,
we discuss ways to improve
and ideas for future work.

1 Introduction

Agricultural technology, or AgTech as it is known
colloquially, faces unprecedented sustainability
and productivity challenges over the coming

Madison Hall
Stanford University
mhall38@stanford.edu

decades. By 2050, the agriculture industry must
produce more food than it has in totality over
the last 8,000 years (Dutia, 2014). Doing so in
the face of imminent environmental and climac-
tic stresses will require a systematic overhaul of
agricultural practices and technology as we know
it. The digitization and subsequently increasing
availability of agricultural data presents a unique
opportunity for deep learning to play a role in
these solutions.

Precision agriculture refers to the measurement
and management of crop variability between
and within fields. Leveraging remote-sensing
and computer vision technology for micro-weed
management - identifying and mapping weeds,
crops, and soil on the scale of individual plants -
promises to reduce the expense and environmen-
tal impact of herbicides, increase crop yields, and
mitigate labor time and costs (Lamb & Brown,
2001). Precision agriculture techniques are not
readily available at commercial scale due to their
expensive nature.

Fortunately, state of the art computer vision mod-
els are posed to perform particularly well on such
a visual recognition task. We propose an architec-
ture for a convolutional neural network that can
take as input an image of a crop seedling and pre-
dict the crop’s species among 12 species classes.
This work is important because identifying weeds
from crops at the early growth stages is critical
for identification and circumvents the difficulties
of feature extraction from overlapping leaves.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

Classification of cultivation plants has long been
done manually, using knowledge of plant phonol-
ogy and cross-referencing with databases of clip-
pings, photos, and illustrations. As image recogni-
tion technology has improved over the last decade,
more attempts to train computers to the task have
cropped up. Applying deep learning represents
the most recent and most successful of these at-
tempts to date.

Traditional statistical approaches to plant classifi-
cation achieve sufficient, but limited, results. Ok,
Akar & Gungor use a random forest classifier to
classify crop species from satellite imagery data,
achieving an accuracy of 85.89% (2012). How-
ever, this method relies on identifying parcels of
agricultural fields rather than individual plants.
One promising work without deep learning is
LeafSnap, a project and mobile application that
claims to identify 184 species of trees given im-
ages of individual leaves on a solid color back-
ground (Kumar et al., 2012). The model relies
on this non-textured background condition to
employ a Support Vector Machine (SVM) and
Expectation-Maximization to perform color seg-
mentation and identify the contours of the leaf.
Then, the model uses the K-Nearest Neighbors
algorithm to identify the closest matching tree
species from the database. LeafSnap reports
that 96.8% of queries are matched to the correct
species within the top 5 results shown to the user,
but does not report accuracy for rank-1 matches,
which would be necessary for precision agricul-
ture use cases.

Without deep learning, these methods depend on
hand-crafted features, like leaf shape and color
segmentation. Deep learning approaches prove
far more robust to diverse input sets. The Deep-
Plant project found that a CNN could predict
the species of 44 plants with up to 99.5% given
just close-up images of leaf veins when trained
on a varied image set of both full and cropped
leaves. The most state-of-the-art work with par-
ticular relevance to our project is a precision-
agriculture robot in Germany, that uses a deep
encoder-decoder CNN for semantic segmenta-
tion of crop fields in real-time (Milioto, Lottes &
Stachniss, 2018). To separate weeds from sugar
beet crops and background, it is fed only with
RGB image data and 14-channel image-storing
vegetation indices. In doing so, they make as-
sumptions about the input data in order to im-
prove resilience against varying field conditions.
They achieve 91.88% on their own test data.
Nkemelu, Omeiza & Lubalo attempt to improve
on this very crop seedling classification problem
by using a 6-layer CNN with max-pooling and

dropout (2018). When using OpenCV’s back-
ground segmentation preprocessing, they achieve
an accuracy of 92.60% on their validation set.

3 Dataset and Features

Our dataset contains 5,539 labelled, colored PNG
images of 960 individual plants at various growth
stages, constituting 12 different species. Each
image has an original resolution of 10 pixels per
mm. This dataset was recorded at Aarhus Univer-
sity Flakkebjerg Research station and provided by
a collaboration between University of Southern
Denmark and Aarhus University (Giselsson et al.,
2017). In 2018, a Kaggle prediction competition
popularized this dataset for classification models.

The species and class sizes in this dataset are as
follows:

Species Status | Number of
examples

Maize Crop | 257

Common wheat Crop | 253

Sugar beet Crop | 463

Scentless May- | Weed | 607

weed

Common Chick- | Weed | 713

weed

Shepherd’s Purse | Weed | 274

Cleavers Weed | 335

Charlock Weed | 452

Fat Hen Weed | 538

Small-flowered Weed | 576

Cranesbill

Black-grass Weed | 309

Loose Silky-bent | Weed | 762

Figure 1. List of classes and their sizes

11: Sugar beet

w0 O
10 10
20
100

EY
&

0
&0
PR
20 @

0 10 20 30 4 5 6

8: Scentless Mayweed

Figure 2. Examples images of crop (Sugar beet,
left) and weed (Scentless mayweed, right.

Following standard best practices, we use ran-
dom shuffling to split the data into 4433 exam-
ples (80%) for the training set and 1108 examples
(20%) for the test set. We then hold out 443 exam-
ples (10%) as the validation set during training.

3.1 Data preprocessing

First, we resize the images to resolutions of 64 x
64 in order to standardize the input to our model
before converting the images into Numpy arrays
(Van Der Wal, Colbert, & Varoquaux, 2011).
Then, we normalize the input arrays per RGB
channel in order to speed up training and reduce
amplitude variance. We attempt two ways to nor-
malize the images: feature scaling to range [0,1],
and standard-scoring using the mean and standard
deviation. We found that the former method per-
forms better when using our softmax activation
function and followed it for the remaining train-
ing and testing. We use OpenCV and Scikit-Learn
packages during these preprocessing steps (Brad-
ski & Kaehler, 2000; Pedregosa et al., 2011). As
one can see in Figure 1, the classes of this dataset
are very unbalanced, with a nearly 500-image
gap between the smallest minority class and the
largest majority class. To remedy this, we per-
form data augmentation on the in order to a) en-
hance the size and variety of the training data and
b) over-sample the minority classes to balance
out the clas sizes. These transformations include
random rotations, reflections, and adding noise.
This step increases our training set to 13120 with
roughly 1,000 images per class, as recommended
for image classification tasks. Finally, we shuffle
the data to prevent batches from having the all
same labels during training.

Figure 4. Image of maize seedling before and
after rotation, which helps the model generalize
to the soil walls

4 Methods

4.1 Baseline model

To measure baseline performance on the data, we
train a simple network composed of two 2D con-
volutional layers (of sizes 32 x 32 and 64 x 64,
respectively) accompanied by a 2D max pooling
to reduce dimensionality, and 10% drop out, to
prevent overfitting. The last two layers are fully-
connected. All convolutional layers use the ReLU
activation function, except for the final dense
layer, which uses softmax activation to output
interpretable prediction probabilities. The model
is compiled using the ADAM Optimization algo-
rithm, a popular choice for deep learning models

for its computational efficiency and relative ease
of implementation (Kingma & Ba, 2014). The
class labels are converted to a one-hot encoding
representation for the categorical cross-entropy
loss function (Figure 4), which is commonly used
for multiclass classification problems.

m

J= _ﬁ Z(; (P 1og(a™?) + (1 - y")log(1 - 7))
Figure 5. Cross-entropy loss function (CS230)

4.2 Pre-trained weights

Since the original crop seedling dataset is rel-
atively small (<1000 per species class), we de-
cide to leverage Keras architectures with weights
pre-trained on ImageNet, a database of about
50 million word-labeled, full-resolution images
which has since become a mainstay resource for
computer vision research (Deng et al., 2009).
Using pre-trained weights has been shown to
improve performance for datasets as small as
100 images per class to levels expected of much
larger datasets (Cho et al., 2015). We adapt three
such architectures — DenseNet121, VGG16, and
ResNet50 — and compare their performance.

o 99
O O O 9,
— @

Figure 5. Visualization of freezing all but last
layers of a pre-trained network (Amidi & Amidi,
2018)

We use transfer learning to apply each of these
architectures to our data by training the weights
on softmax as well as, experiment-permitting, the
last few layers. Otherwise, we freeze all remain-
ing top layers. We vary the number of frozen
layers as the independent variable in one of our
experiments. Using the pre-trained network as
the base, we then add two dense layers to cus-
tomize our output shape and a 10% dropout to
combat overfitting.

DenseNet121 DenseNetl21 is a 121-layer deep
CNN, the smallest offering of a suite of models
known as Densely Connected Convolutional Net-
works (Huang et al., 2017). DenseNets’ layers
are connected feed-forward, with feature-maps of
each preceding layer used as input for each sub-
sequent layer. We chose DenseNet for its many
advantages: addressing the vanishing-gradient
problem, encouraging feature reuse, reducing the
number of parameters needed, all at relatively
lower computation costs for high performance.

VGG16 VGGI16 is a 16-layer deep convolu-
tional network designed for image detection (Si-
monyan, K., & Zisserman, 2014) that uses small,
3 x 3 convolutional layers and 2 max-pooling
layers. VGG’s depth allows it to extract more
complex and representative features from images.

ResNet50 ResNet is a 50-layer Deep Residual
Learning designed for image recognition (He et al,
2016). It is well-known for its robustness against
the accuracy degradation problem when deeper
models converge.

5 Results and discussion

5.1 Evaluation metrics

As our main evaluation metric, we focus on F1
score:

Pl 2 X precision X recall

precision + recall

This is a more nuanced and expressive metric
than accuracy for two reasons. First, our dataset
is relatively unbalanced (as little as 253 examples
for the smallest class and 762 examples for the
largest class — a 500 example gap). The model
could achieve a high accuracy by over-predicting
the majority class, Loose Silky-bent, even if it
were under-predicting minority classes (in fact,
this was a common problem in the early stages
of this project). Second, the weed-detection prob-
lem is particularly sensitive to false negatives and
false positives; failing to classify weeds as weeds
or, even worse, incorrectly classifying cultivation
crops as weeds, would prove costly in the use case
of automated herbicide spraying. Therefore, we
require an evaluation metric like F1 that captures
both precision and recall.

5.2 Experiments

Freezing pre-trained network layers When
using transfer learning to take advantage of pre-
trained weights, one can freeze the weights of
certain layers to prevent them from changing
during training. In Amidi & Amidi, its recom-
mended to freeze all layers when training on a
small dataset and unfreezing all layers on a suf-
ficiently large dataset. To find the optimal ad-
justment for our crop seedling data, we gradually
unfreeze the bottom layers of the network - we
chose DenseNet121 for this experiment, since
it was the fastest to train - as the independent
variable and record the effect on both the test
accuracy and test F1 score of the model.

L 0Model performance after unfreezing layers of DenseNet121

09

F1 Score
o
@

]
b

°©
S

05

0 2 4 6 8 10 12 14
Number of unfrozen layers

N OModel performance after unfreezing layers of DenseNet121

09

Test accuracy
°
&

)

o
o

05

0 2 4 6 8 10 12 14
Number of unfrozen layers

Figure 6. Results of unfreezing up to 14 layers of
DenseNet121

After training the model for 10 epochs at a time
using up to 14 unfrozen layers, we found that
the benefits of unfreezing layers tapers off after
the first layer. The highest 88.40% F1 score is
achieved at 7 and 14 unfrozen layers, but these
only represents a 1% improvement over the F1
score of 87.40% achieved after 1 unfrozen layer.

Increasing dropout rate In an effort to reduce
overfitting, we tried increasing the dropout rate
at 0.1 intervals and recorded the effect on the F1
score. Despite our hypothesis, this resulted in no
significant change in the F1 score.

Data augmentation and shuffling We were
able to measure our model’s performance on both
the original dataset (normalization, no data aug-
mentation) and the augmented dataset (includes
transformations of images). Since the class sizes
were so imbalanced in the original dataset, there
was a clear preference for the majority class
(Loose silky-bent, with the original model almost
exclusively predicting the same one class. Af-
ter performing data augmentation and retraining
the models, their performances improved, as dis-
cussed in the next section.

5.3 Results

After training each model on the normalized train-
ing data for 20 epochs, we can compare their per-
formances.

Hyperparameters. For each instance, we hold out
10% of examples as the validation set and use a
learning rate of le-3 and a batch size of 32, the
default parameters, balancing convergence speed
and stability. We use a dropout rate of 0.4 to pre-

vent overfitting to the training data, and freeze all
but the bottom layer for the pre-trained networks.

Model F1 Test Train | Train
score | accu- | accu- | time
racy | racy | (s)
(%) (%)
Baseline | 74.85 | 73.62 | 70.05 | 167.81
Dense- 56.94 | 56.72 | 62.46 | 233.13
Netl121
VGG16 59.21 | 59.44 | 63.24 | 222.11
ResNet50 | 56.48 | 5691 | 90.82 | 252.41
Baseline* | 73.04 | 73.62 | 99.83 | 587.78
Dense- 62.32 | 64.02 | 77.50 | 360.95
Netl121*
VGG16* | 65.67 | 65.14 | 66.49 | 328.00
ResNet50% 70.67 | 71.23 | 75.84 | 358.84

Figure 6. Comparing the performances of each
model. * denotes that the model was trained on
the augmented dataset.

5.4 Discussion

We can see in the results above that the base-
line model performed the best both before and
after data augmentation. All models except for
ResNet50 saw an improvement in performance
after training on the augmented data. The rela-
tively low F1 scores for the pre-trained networks
are inconsistent with our hypothesis that the pre-
trained networks would perform far better than a
model trained from scratch. To investigate why,
we examine a confusion matrix and misclassi-
fied examples to understand how the models are
making their predictions.

Figure 8. Confusion matrix for VGG16 model

Here we can see that there is a high number of
Loose silky-bent images that the model is predict-
ing as Black grass.

Predicted label: Loose Silky-bent
True label- Black-grass

Predicted label- Black-grass
True label: Loose Silky-bent

0 10 20 30 4 50 &

Figure 9. Misclassified examples of similar
looking seedlings

Clearly these two seedlings are very similar in
terms of size, shape, and color, making them diffi-
cult to distinguish. Despite our data augmentation
efforts, we posit that the model would need more
training data (especially since Black grass is one
of the most underrepresented classes) to be able
to recognize them from each other.

6 Conclusion and future Work

Overall, the simple CNN model performed the
best in all categories. This was surprising consid-
ering our hypothesis that the pre-trained networks
would outperform a model trained from scratch
when using weights from training on ImageNet.
Possible reasons for which this was not the case
could be that our dataset is too dissimilar from
ImageNet; we normalized our data differently
from the pre-trained networks; we modified the
structure of the pre-trained networks too much;
we did not customize the structure of pre-trained
networks enough. In the future, we would like to
try adding texture analysis as a feature to improve
the results.

7 Contributions

J.E. implemented DenseNet and ResNet models.
J.E. explored data augmentation, freezing layers,
and increasing dropout rate. J.E. also prepro-
cessed the data.

M.H. implemented baseline and VGG model.
M.H. created confusion matrices and compiled
results. M.H. conducted literature review.

8 Github Link

https://github.com/jackieennis/
cs230-seedling-classifier/blob/
master/jackie},20(2) .ipynb

References

Amidi, A., & Amidi, S. (2018, November).
Deep Learning Tips and Tricks Cheatsheet. Re-
trieved from https://stanford.edu/ shervine/teaching/cs-
230/cheatsheet-deep-learning-tips-and-tricks

Bradski, G., & Kaehler, A. (2000). OpenCV. Dr.
Dobb’s journal of software tools, 3.

Cho, J., Lee, K., Shin, E., Choy, G., & Do, S. (2015).
How much data is needed to train a medical image deep
learning system to achieve necessary high accuracy?.
arXiv preprint arXiv:1511.06348.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., &
Fei-Fei, L. (2009, June). Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference on
computer vision and pattern recognition (pp. 248-255).
ITeee.

Dutia, S. G. (2014). Agtech: Challenges and opportu-
nities for sustainable growth. Innovations: Technology,
Governance, Globalization, 9(1-2), 161-193.

Giselsson, T. M., Jgrgensen, R. N., Jensen, P. K., Dyr-
mann, M., & Midtiby, H. S. (2017). A public image
database for benchmark of plant seedling classification
algorithms. arXiv preprint arXiv:1711.05458.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition (pp. 770-778).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 4700-4708).

Kingma, D. P, & Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kumar, N., Belhumeur, P. N., Biswas, A., Jacobs, D.
W., Kress, W. J., Lopez, L. C., & Soares, J. V. (2012,

October). Leafsnap: A computer vision system for au-
tomatic plant species identification. In European Con-
ference on Computer Vision (pp. 502-516). Springer,
Berlin, Heidelberg.

Lamb, D. W., & Brown, R. B. (2001). Pa—precision
agriculture: Remote-sensing and mapping of weeds in
crops. Journal of Agricultural Engineering Research,
78(2), 117-125.

Lemaitre, G., Nogueira, F., & Aridas, C. K. (2017).
Imbalanced-learn: A python toolbox to tackle the curse
of imbalanced datasets in machine learning. The Jour-
nal of Machine Learning Research, 18(1), 559-563.

Milioto, A., Lottes, P., & Stachniss, C. (2018, May).
Real-time semantic segmentation of crop and weed
for precision agriculture robots leveraging background
knowledge in cnns. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA) (pp. 2229-
2235). IEEE.

Nkemelu, D. K., Omeiza, D., & Lubalo, N.
(2018). Deep Convolutional Neural Network for
Plant Seedlings Classification. arXiv preprint
arXiv:1811.08404.

Ok, A. O., Akar, O., & Gungor, O. (2012). Evaluation
of random forest method for agricultural crop classi-
fication. European Journal of Remote Sensing, 45(1),
421-432.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011).
Scikit-learn: Machine learning in Python. Journal of
machine learning research, 12(Oct), 2825-2830.

Simonyan, K., & Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Van Der Walt, S., Colbert, S. C., & Varoquaux, G.
(2011). The NumPy array: a structure for efficient
numerical computation. Computing in Science & En-
gineering, 13(2), 22.

