PetFinder.my Adoption Speed Prediction Using Pet
Profiles

Iris Wang Eva Gong
irisl121@stanford.edu gong717@stanford.edu

Abstract

The goal of this project is to build a neural network to predict how fast a pet is
adopted so that shelters and adoption agencies can better focus their resources to
help the pet to find new homes. Using PetFinder.my’s pet profile data (provided
as part of a Kaggle competition [1]), we extracted about 400+ features from
numeric, categorical and text input data. After employing Adam Optimization,
Regularization and random search of hyperparameters (e.g. learning rate, minibatch
size, number of neurons, and regularization coefficient), we trained a 2-layer neural
network to predict pets’ adoption speed with a 38.6% Validation Accuracy.

1 Introduction

Artificial Neural Networks have become the standard in achieving state-of-the-art results in supervised
learning tasks where the inputs are of various and complex formats. They have been shown to perform
well on image classification, text analysis and other tasks involving large input datasets.

In our case, we are interested in applying neural networks to predict the adoption speed of shelter
animals. Using PetFinder.my’s pet profile data (provided as part of a Kaggle competition [1]), we aim
to build neural networks to predict how fast a shelter pet will be adopted. This problem is of great
interest for two reasons. First, the input data contains both structured numerical features (e.g. type,
breed, size etc.), and unstructured ones (e.g. pet images and text descriptions). The rich amount of
data and its different formats pose technical challenges that we are interested in tackling. Furthermore,
predicting each pet’s adoption speed can help animal shelters allocate resources and employ strategies
to speed up pet adoptions early on. This makes the problem very meaningful.

2 Dataset and Features

2.1 Data Type

The input data is comprised of three types: structured data, unstructured data, and unique IDs (see
Table 1 for a list of data fields and descriptions provided by Kaggle.com [1]). During initial data
pre-processing, we removed all unique ID columns as they do not add useful signals to the model.

Structured data covered basic information of the pet information like age, type, breed etc. We
converted categorical features into integer matrices using one hot encoding, resulting in 400 input
features and 5 adoption speed classes as the output. Those 5 adoption speed classes indicate how
quickly, if at all, a pet is adopted (0 if adopted on the same day, 1 if adopted between 1 to 7 days, 2 if
between 8 to 30 days, 3 if between 30 to 90 days, and 4 if more than 90 days). Because the input data
has already taken care of most of the missing values (e.g. a value of 0 = NotSpeci fied is given
to pets missing F'ur Length values), we did not take additional steps to impute missing values for

CS230: Deep Learning, Spring 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

structured data. We acknowledged the large input feature space, and tried following two methods for
feature selection: 1) Keeping only the top 20 categories and aggregate the rest in 1 single category 2)
Principle Component Analysis As will be shown later in the Results section, our models have low
training accuracy after employing regularization. We therefore decided to include all features for
training.

Some pets are provided with text description (in the Descriptions field). These are short sentences
written by the agency/foster homes. Majority of the descriptions are in English with a few exceptions.
Kaggle provides analysis on sentiment and key entities for the description using Google’s Natural
Language API. From the text descriptions, we extracted the following features to be fed into the
softmax classfier. 1) Document sentiment score: This is provided by the API. Score of the sentiment
ranges between —1.0 (negative) and 1.0 (positive) and corresponds to the overall emotional leaning
of the text. For pets missing this information, we imputed with 0. 2) Document sentiment magnitude:
This is provided by the API. Magnitude indicates the overall strength of emotion (both positive and
negative) within the given text, between 0.0 and co. For pets missing this information, we imputed
with 0. 3) Letter count: This is the additional feature created to represent how long the description is.
This is created by counting the total number of letters in the description.

Table 1: Input Data Description

Field Name Format Category Feature Type
Type int Structured Data Categorical
Breedl int Structured Data Categorical
Breed2 int Structured Data Categorical
Gender int Structured Data Categorical
Colorl int Structured Data Categorical
Color2 int Structured Data Categorical
Color3 int Structured Data Categorical
MaturitySize int Structured Data Categorical
FurLength int Structured Data Categorical
Vaccinated int Structured Data Categorical
Dewormed int Structured Data Categorical
Sterilized int Structured Data Categorical
Health int Structured Data Categorical
State int Structured Data Categorical
AdoptionSpeed int Structured Data Categorical
Age int Structured Data Continuous
Quantity int Structured Data Continuous
Fee int Structured Data Continuous
VideoAmt int Structured Data Continuous
PhotoAmt float Structured Data Continuous
Name object Unique ID NA
RescuerID object Unique ID NA
PetID object Unique ID NA
Description object Unstructured Data Feature Engineering

2.2 Train, Validation and Test Sets

The dataset provided by Kaggle has 14, 993 samples for training, and 3, 948 samples for testing.
Following field best practices, we randomly sampled 20% of the training set as the hold-out validation
set, leaving us 11,994 samples for training, and 2, 299 samples for validation. We have also validated
that the class distributions are consistent across training and validation sets (see Figure 1).

3 Methods

3.1 Baseline Model

As mentioned previously in Section II, our baseline model focuses on structured data types, and
Descriptions field is removed from training. After splitting raw training data into training and

3227 3370

810 827
692
2501 2567 589
|| =

Same Day 1~7Days 830 Days 30~90 Days >90 Days Same Day 1~7 Days 8“30Days 30~90 Days >90 Days

Train Set Validation Set

Figure 1: Class Distributions for Train and Validation Sets

validation set, we ended up having an input layer of dimension 11, 994 x 400. Due to the nature of this
problem, we employed cross-entropy as the cost function, ReLU as activation functions for the hidden
layers, and softmax classifier for the output layer. To optimize the training speed, we employed the
mini-batch approach (a batch size of 32 and a total epoch of 1500) and Adam optimization method.

To lower the bias, the main hyperparameters that we would like to optimize are the number of hidden
layers and the number of neurons in each hidden layer. We experimented with two fully connected
neural networks for the baseline model. The first one has one hidden layer with 200 neurons, and the
second one has two hidden layers with 200 and 100 neurons for the first and second hidden layer,
respectively. Models’ performancs will be shown later in the Results Section.

3.2 Regularization

To prevent models from over-fitting, we used L2 regularization to try to lower the variance.

3.3 Hyperparameters tuning

After adding the regularization terms, we noticed that the difference between training accuracy
and validation accuracy significantly decreased. To improve the performance of the model, we
used random search to tune the hyperparameters. We used random search because the dimensions
of parameters are high and it is infeasible to do a grid search throughout the entire space. The
hyperparameters are:

3.3.1 Learning rate

We picked learning rates between 0.000001 to 0.1 on a log scale.

3.3.2 Minibatch size

Minibatch size options are selected between 32 to 512 by increase of power of 2.

3.3.3 Number of neurons

Following some general best practices, we picked the number of neurons for the first layer to be
within the range between half of the number of input features to the total number of input feature
(e.g. if there are 400 input feature, we will test neuron size between 200 to 400) [2]. The number of
neurons for the second layer is set to be half of the first layer’s.

3.3.4 Regularization coefficient

We tested regularization coefficients ranging between 0.001 and 0.01.

After setting the different hyperparameters, we randomly searched through the space 15 times to pick
the ones with the best validation set accuracy.

4 Results

4.1 Prediction Accuracy

For this softmax classifier, our main performance metric is the overall prediction accuracy rate,
defined as the total number of correctly predicted samples over the total number of samples. We chose
overall accuracy measurement over per-class evaluation metrics because as shown before in Section
II, the distribution of the output classes is nearly uniform (except for the Same Day class). Plus,
optimizing the number of correctly predicted samples helps with the Kaggle competition performance.
Table 2 below shows the training and validation accuracies for different models and different Neural
Network infrastructures. As shown, after applying L2 regularization, we obtained an improved
validation accuracy, and lowered the difference between training and validation accuracies. Although
the 3-layer network has better performance over other networks, unfortunately its long computing
time restricted our abilities to tune hyperparameters, and we thus decided to use a 2-layer network for
hyperparameter tuning.

Table 2: Training and Validation Accuracies

Model #Layers L2 Regularization Training Accuracy Validation Accuracy
Baseline 1 No 77.1% 34.5%
Baseline 2 No 97.4% 34.2%
Baseline with Text Features 2 Yes 36.1% 35.0%
Baseline with Text Features 3 Yes 40.9% 38.3%

Table 3 shows the training and validation accuracies for top 10 parameter combinations with the best
performance. As shown, a combination of 0.001 learning rate, mini-batch size of 64, 221 neurons for
the first layer and 0.004 regularization rate gives the best validation accuracy of 38.6%. The training
accuracy for that combination is 40.9%, and this small difference between training and validation
accuracies indicates that the model is not suffering from over-fitting.

Table 3: Training and Validation Accuracy by Hyperparameters Combination

Learning Rate Minibatch Size # Neurons Regularization 5 Training Accuracy Validation Accuracy

0.00001 128 331 0.01 41.0% 38.4%
0.00001 128 371 0.004 42.4% 38.2%
0.000001 64 301 0.007 40.6% 37.4%
0.0001 128 271 0.001 57.7% 37.8%
0.00001 64 281 0.004 41.2% 38.0%
0.00001 64 221 0.007 40.9% 38.3%

0.001 64 321 0.01 40.0% 37.8%

0.001 64 221 0.004 41.2% 38.6%
0.00001 64 271 0.01 40.9% 37.9%
0.00001 64 271 0.01 40.2% 36.7%

4.2 Error Analysis

For the error analysis, we calculated per-class performance metrics to understand how the model
performs across different classes. As shown in the confusion matrix plot in Figure 2, More Than 90
Days class has the most instances that are correctly predicted by the model.

Following common multi-class performance measures outlined by Sokolova et al., we then calculated
per-class and average precision and recall rates through macro-averaging [3]. We chose macro-
averaging over micro-averaging because all classes are treated equally in this analysis. As shown
in Table 4, Same Day class has the lowest precision and recall rates, whereas More Than 90 Days
class has the highest precision and recall rates. As the whole dataset has quite a small percentage of
Same Day samples to start with, we are less concerned about its low precision and recall Rates. On
the other hand, we found the variability in precision and recall rates across other classes to be worth
investigating. We listed out some potential ways to deal with this in the next section.

Same Day 1~7 Days 8~30 Days 30~90 Days >90 Days

Same Day

1~7 Days

8~30 Days

Actual Values

30~90 Days

>90 Days

Predicted Values

Figure 2: Confusion Matrix

Table 4: Additional Performance Metrics on the Validation Set

Adoption Speed Precision Recall

Same Day 0% 0%

1 to 7 Days 32% 44%

8 to 30 Days 31% 34%

30 to 90 Days 42% 14%
More than 90 Days 48% 64%
Average 31% 31%

5 Discussions and Future Work

To summarize, for this project we aimed to build a neural network to predict pets’ adoption speed
class with a mix of numeric, categorical features and additional features obtained through text data’s
feature engineering. After employing Adam Optimization, Regularization and random search of
hyperparameters (e.g. learning rate, minibatch size, number of neurons, and regularization coefficient),
we trained a 2-layer neural network to predict pets’ adoption speed with a 38.6% validation accuracy.
In terms of per-class performance measurements, the precision and recall rates vary across classes,
with the Same Day class having the lowest precision and recall rates, and More Than 90 Days class
having the highest precision and recall rates.

One potential area for future work is to build and train hyperparameters on deeper networks. Due to
the large amount of input data and features, we are limited by the computing time in terms of how
many layers and different hyperparameters we can train with. We believe trying out deeper networks
can help with improving the training accuracy.

Additionally, to lower the differences among per-class performance measurements, it will be in-
teresting to see if the results will be more balanced based off Average Prediction Accuracy rather
than Overall Prediction Accuracy. Alternatively, we can bias the softmax classifier by adjusting the
weights of each class when calculating the prediction probabilities.

Lastly, due to the computing time constraint, we did not have time to look into image datasets. For
future work, it will be interesting to see if we can train a CNN on the image dataset, with the adoption
speed as the out variable.

6 Contributions

Both members contributed equally to this project. Here is the link to our github repository:
https://github.com/yifan-eva-gong/petfinder.my-adoption-speed-prediction.

We would like to thank our Project Mentor Gael Colas for his generous and great help throughout our
project research. We would also like to thank Professor Andrew Ng and Professor Kian Katanforoosh
for their teaching and guidance.

References

[1] PetFinder.my Adoption Prediction: How cute is that doggy in the shelter? Kaggle Competition.
https://www.kaggle.com/c/petfinder-adoption-prediction/

[2] Heaton, J. (2009). Introduction to neural networks with Java. Chesterfield (MO, USA): Heaton Research.

[3] Sokolova, M., Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks.
Information Processing Management, 45(4), 427-437.

