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Abstract—In recent times, there has been a large amount of
excitement surrounding the use of reinforcement learning
systems for robot control and navigation. A significant research
effort has been directed at the problem of visual navigation.
However, most of these algorithms encounter difficulty
navigating complex trajectories, especially when the target is
far from the start position. We propose a new method which
combines reinforcement learning with traditional search-
based path-planning, to solve long navigation problems. This
approach, referred to as Deep Neural Robot Control, performs
exceptionally well on several robot navigation tasks, often
learning a human-like policies for navigation and collision
avoidance. We also introduce framework for zero-shot transfer
of learned policies from simulation to the physical world.
Using this framework, we demonstrate that a trained DNRC
agent can provide a good control policy for a real mobile robot.

Code: https://github.com/maxkferg/dbm
Video: https://youtu.be/cZWFUaci8jc

1. Introduction

Autonomous control and path-planning have a number
of real-world applications, especially in the areas of au-
tonomous driving and robotics. Traditional control algo-
rithms, such as the linear-quadratic regulator (LQR) re-
quire that all of the states of the system are measurable.
Modern reinforcement learning (RL) techniques provide the
opportunity to directly learn from the environment, allowing
many of the traditional assumptions to be relaxed. Many
state-of-the-art systems leverage an RL algorithm such as
A3C to navigate mazes, using only image pixels [1]. While
functional, these systems encounter difficulty navigating
complex trajectories, especially when the target is far from
the starting position. To overcome this problem, we propose
a new end-to-end learning algorithm, Deep Neural Robot
Control (DNRC), that combines search-based path-planning
with an off-policy model-free RL controller. Our preliminary
experiments show that this system performs well when
navigating complex environments containing one or more
moving robots.

The overarching goal of this work is to develop a control
and navigation system that performs well in both simulated
and physical environments, as illustrated in Figure 1. We
have already addressed some problems related to simulation-
real transfer and robot perception in related works [2, 3].
For the purpose of this paper, a good navigation algorithm
should ensure the robot moves to the target position quickly
and safely. Specifically, a good mobile robot control system
should:

¢ Avoid colliding with walls and stationary objects

« Anticipate the movement of people and other robots,
and act to avoid collision wherever possible

e Minimize sudden acceleration and rotation of the
robot, so as to conserve battery resources

« Reach the target destination as quickly as possible,
given the above conditions

The remainder of this document is organized as follows:
In Section 2, we describe related works in both the machine
learning and traditional robotics domains. In Section 3,
provide the mathematical background and notation used in
this paper. In Section 4, we briefly introduce deep neural
robot control. Finally, we explain how the learned policy was
transferred to a real robot, using a simulated environment
as an intermediate representation.

2. Related Work

Recent work in visual navigation has focused on navigat-
ing in both indoor [1, 4] and outdoor [S] environments using
deep reinforcement learning. Researchers have proposed
methods that leverage 2D maps [6] as well as methods that
navigate on visual input alone [7]. In recent times, a large
research effort has been directed at the problem of visual
navigation [1, 4, 7]. A common benchmark for maze-solving
algorithms is provided in [8]. Our approach is most closely
related to hierarchical RL methods, which tend to perform
well on maze environments [9]. A related but slightly differ-
ent problem is that RL agents often have difficulty exploring
large state spaces, which has been addressed in a recent
work [10]. Finally, in DNRC we use intrinsic motivation in
the form of checkpoints to guide the agent to the goal, as
presented in [11].
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Figure 1. Simplified Environment Representation (SER) framework for zero-shot transfer of control policies from simulation to the real world. Sensors on
the mobile robot are used to generate a simplified model of the environment. Reinforcement learning is used to find a good policy in this environment.

Actions from this policy are sent directly to the physical robot.

In traditional robotics, the navigation problem is broken
into two parts, namely motion planning and control. In mo-
tion planning, a search algorithm is used to find the optimum
path from the target to the goal. A control algorithm, such
as a proportional-integral-derivative controller (PID), is then
used to guide the agent along the path. This approach has
shown to be effective in a number of real world scenarios
[12]. However, it suffers from several limitations. Firstly, the
path-planning step is often too computationally demanding
to be performed in real-time [13]. Secondly, this approach
is difficult to apply in environments which are stochastic.
Finally, this approach is difficult to apply when the agent
must also avoid other moving objects. An exhaustive classi-
fication of traditional path-planning approaches can be found
in a survey by Hwang and Ahuja [13].

3. Background

In reinforcement learning (RL), we generally consider an
agent interacting with an environment through a sequence
of observations, actions and rewards. The goal of the agent
is to select actions so as to maximize the cumulative future
reward. For robot navigation, the environment is generally
modeled as a Partially Observed Markov Decision Process
(POMDP). At each time period, the environment is in some
state s € S. The robot takes an action a € A, which causes
the environment to transition to state s’ with probability
T(s'|s,a). At the same time, the agent receives an observa-
tion o € (2. Finally, the agent receives a reward r equal to
R(s,a). The process then process repeats. The goal is for the
robot to choose actions at each time step that maximize its
expected future discounted reward: E [Ztoio fytrt], where
r¢ is the reward earned at time ¢. The discount factor ~y
determines how much immediate rewards are favored over
more distant rewards.

A model-free RL algorithm develops a policy , for act-
ing in the environment, without explicitly learning a model
of the environment [14]. In this work, we use a distributed
implementation of the Deep Deterministic Policy Gradient
(DDPG) algorithm to learn a robot control policy [15].

DDPG is a model-free, off-policy actor-critic algorithm. For
continuous control, parametrized policies 74 can be updated
by taking the gradient of the expected return V4J(¢). In
actor-critic methods, the policy, known as the actor, can be
updated through the deterministic policy gradient algorithm.
[16]. Recently, a number of changes have been proposed to
improve the stability of the original DDPG algorithm [17],
all of which are included in this work.

4. Neural Robot Controller

In this section we develop a hybrid approach for mobile
robot control and navigation, namely Deep Neural Robot
Control (DNRC). Modern reinforcement learning algorithms
are particularly effective at solving continuous control prob-
lems with a short horizon. This makes reinforcement learn-
ing ideal for completing short robotic maneuvers such as
avoiding moving objects. In DNRC, we find a path from
the current position to the goal, by searching over a coarsely
discretized representation of the state space, using the A*
search algorithm. To reduce the size of the state space, we
introduce a heuristic function & : S — S which maps points
from the complex, potentially continuous, state space S, to a
simpler discrete representation S. In practice, this heuristic
function just discards inessential dimensions of S, such as
robot velocity. Once a path through S has been established,
a model-free RL algorithm is used to follow this path.

Assume an agent exists at point p in an environment with
state s and target location ¢. We use the DDPG algorithm
to learn the action-value function Q,(s,a,t) and policy
mg(s,t) for navigating from p to t. We simultaneously learn
another function V' (h(p), h(t)) that estimates the cost of
moving from p to . Intuitively, V (h(p), h(t)) ~ Qx(s,a,t)
for any action a that does not significantly change the robot
state. Hence, a single neural network with two separate
heads is used to predict both V' (h(p), h(t)) and Q(s,a,t).

At the start of each episode, the A* search algorithm is
used to find the shortest distance from h(p) to h(t), relying
on the Vi (h(p),h(t)) as a distance metric. This path is
mapped back to a path in Euclidean space. Finally, we place



Figure 2. Descretized state space showing expected value of each node, in
the house environment

checkpoints along the shortest path and execute my(s,t)
repeatedly to move between each checkpoint towards the
goal.

Our chosen heuristic function, h(p;) maps the full envi-
ronment state to a simple vector describing the position of
the robot and nearby obstacles. Figure 2 shows the Value
function projected into Euclidean coordinates, providing
some intuition for why this method works. Specifically, we
can imagine using A* to find the optimum path across the
value surface shown in the Figure.

4.1. Mobile Robot Control

We test DNRC in a number of challenging 3D navigation
environments, each simulated with the PyBullet physics
engine [18]. DNRC must learn to control a two-wheeled
mobile robot, based on the TurtleBot platform. The robot
is controlled by specifying the forward velocity v € [—1, 1]
and the rotational velocity r € [—1,1]. At each timestep,
the agent must choose an action a = [v,r], based on an
observation o(s) of the current state. Many recent works
have focused on using raw pixel input from a robot-mounted
camera as the input state. However, we decided against this
approach as it (1) does not transfer well from simulation to
the real world, and (2) ignores additional information about
the building such as a plan view map. Instead, we provide
the agent with raw sensor data and a set of bitmap tiles
describing the surroundings:
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where (Zrobot> Yrobots O,0p0t) is the robot velocity, and
(%targets Ytarget) is the position of the target relative to the

Figure 3. The playground environment with two mobile robots. The pink
box is a target for one of the robots.

robot. Zya1s 1S @ 64 X 64 matrix describing the position
of walls near the robot. Specifically, the Z,,;s can be
thought of a plan-view image of the environment, centered
on the robot, where walls are colored white and the floor
is colored black. Iobjects’ Irobotsa Icheckpointsa and Itargets
are similar images describing the position of objects, other
robots, checkpoints and targets, respectively.

The reward function is chosen to prioritize the controller
objectives described in the introduction. We penalize any
control actions with a magnitude greater than 0.6. In a pre-
vious work, we discovered that this penalty greatly increases
training stability in some discounted MDP’s [2]. Without
a penalty on action magnitude, the optimizer will choose
increasingly large actions to reach the goal faster. This will
often cause the gradients to explode, especially when actions
are restricted to [—1,1] by the tanh activation function.
Additionally, we choose to penalize rotational velocity, to
prevent the robot rotating aimlessly. The battery Rpq::(s,a),
and spin Ry, (s,a), penalties are defined as follows:

Rbari(s,a) = —0.001 |max(|a| — 0.6,0)> (2

Rspin(57 a) = —0.001 orobot (3)
The total reward is found by summing these values:
R(Sv a) = Rtarget (Sa (L) + Rcollision (37 (L) (4)

+Rbatt (57 (l) + Rspin('S; a)

where Riqrget(s,a) is 1 if the agent reaches the target,
otherwise it is 0. Reoiision (S, @) is a function that penalizes
the robot for getting too close to other objects:

RCOlliSiOn(Sy a) = max(—l, —0.3620(0'4_d)) ®))

where d is the distance between the robot and any other
object, measured in meters. The episode is terminated if the
robot reaches the target, or after 100 timesteps.

4.2. Environments

We define multiple testing environments, which are now
described.



Playground Environment: This is a simple environ-
ment with 3 connected rooms. Robots and targets are placed
randomly. On average, the target can be reached within 14
steps. A screenshot from the Playground environment is
shown in Figure 3.

House Environment: This is a more complex environ-
ment with 9 connected rooms and multiple long corridors.
Robots and targets are placed randomly. On average, the
target can be reached within 43 steps. This environment was
automatically generated from a Lidar scan of a real house.

Building Environment This is a very large environment
with 16 rooms and long corridors. Robots and targets are
placed randomly. On average, the target can be reached
within 82 steps. This environment was automatically gener-
ated from a Lidar scan of the Y2E2 building on Stanford
campus.

Each of the environments contain at least two other
robots. The robots share the same policy, but each make
actions and observe rewards independently. The episode is
terminated once every robot has reached the done state.

4.3. Training

The DNRC agent is trained in a variety of different nav-
igation environments, using the Deep Deterministic Policy
Gradient Algorithm (DDPG) with TD3 extensions [17]. The
training process is distributed across a cluster of virtual ma-
chines using the Apex training algorithm [19]. The training
cluster consists of a single master node and four worker
nodes. The master node has 64 CPU cores and a single
NVIDIA V100 GPU. Each worker node has 96 CPU cores
and 384 GB of memory. Trajectories are generated on the
worker nodes by executing the policy m4 on each robot.
Each trajectory is sent to the master node which stores it in a
replay buffer. The learner continuously optimizes the current
policy using DDPG with prioritized experience replay. The
updated policy is sent to the worker nodes at regular inter-
vals (every few seconds). In our implementation, the worker
nodes generated approximately 20,000 trajectory steps per
second, and the learner sampled approximately 80,000 tra-
jectory steps/second from the replay buffers. Training took
4-48 hours based on the complexity of the environment.

4.4. Results

The average episode reward is compared to two other
modern reinforcement learning algorithms, Twin Delayed
Deep Deterministic policy gradient (TD3) [17] and Proximal
Policy Optimization (PPO) [20] in Table 1.

4.5. Human-level Control

After extensive training, the DNRC agents begin to
exhibit some human-like control policies. The interaction
between multiple robots is particularly interesting: Initially,
the agents learn to slow down when another robot is nearby
so as to avoid collision, as shown in Figure 4a. However, this

TABLE 1. MEAN EPISODE REWARD FOR EACH ENVIRONMENT. THE
PPO AND TD3 ALGORITHMS (BASELINES) ARE COMPARED TO OUR
DEEP NEURAL ROBOT CONTROL (DNRC) ALGORITHM

Environment PPO | TD3 | DNRC (ours)
Playground (3 Robots) 091 | 093 | 0.96
House (3 Robots) 044 | 045 | 091
Building (5 Robots) 0.03 | 0.05 | 0.34

o

(a) 100 million training steps, 2 hours

(b) 800 million training steps, 16 hours

Figure 4. Human-level collision avoidance. (a) Faced with a potential
collision, the agents initially learn to slow down and slowly pass each
other. (b) After extensive training, robots learn to both move to the right
and pass each other at full speed.

policy is sub-optimal in the discounted Markov setting, as it
prolongs the time until the goal is reached. After much more
training, the agents learn that they can safely pass each other
at speed, so long as they both turn the same way to avoid
collision. For example, we observed that both robots would
always pass on the right when travelling directly towards
each other, as shown in Figure 4b. As both robots execute
the same policy, each agent learns to anticipate the behaviour
of the other robot and acts accordingly.

In some cases, we observed the development of non-
greedy control policies, which tend to be quite atypical
of reinforcement learning approaches. One example, is the
interaction of two robots in a narrow hallway, as shown in
Figure 5. In this scenario, robot A aims to reach target
T4, but robot B is blocking the path. After 20 million
training steps, this results in a deadlock where robot A
never reaches the target. However, after 80 million training
steps robot A first moves to the side of the hallway to let
robot B passed. It then proceeds to the goal.
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(b) 800 million training steps, 16 hours

Figure 5. Non-greedy strategic control. (a) Agent A can not pass agent B to
reach target 74, as both agents move greedily and somewhat unpredictably.
(b) After extensive training, agent A learns to move to the wall, letting agent
B past and allowing it to reach the target.

5. Physical Robot Tests

For the proposed algorithm to have practical use, it must
also perform well when controlling a real robot. In this
section, we demonstrate that DNRC transfers well from a
simulated environment to a real environment. Physical tests
are conducted in a three bedroom house. The robot (a Turtle-
Bot 2) must navigate to random target locations in the house,
whilst avoiding walls and furniture. Given the large number
of samples required for training, it is not feasible to run the
training algorithm using the real robot. Instead, we train
the algorithm is simulation using stochastic environment
dynamics, and then evaluate the trained algorithm directly,
using zero-shot transfer.

During simulation, we randomly choose the TurtleBot
dynamics from a Gaussian prior over the real-world dy-
namics. This ensures that the learned control policy is
robust to variations in TurtleBot dynamics. To formalize
this approach, we adopt the transfer learning framework
from Sutton and Barto [21]. We aim to train a policy mg
that performs well on tasks M € M in set of tasks (each
task is represented as an MDP). We assume that there is a
distribution over tasks, such that M ~ €;,. Next, we as-
sume that the state-space, action-space and reward function
is constant across all tasks in the task space M. We assume
that there is some distribution over the task dynamics, such
that T'(s, a, s’) ~ Qp. Therefore, the distribution over tasks
Q) is solely characterized by the distribution over dynamics
Q. It follows, that a policy 7, that is able to achieve good
performance on a finite number of source tasks drawn from
Q. will generalize well across target tasks drawn from €2
[21]. Therefore, we expect that the policy will also perform

well in the physical system if we choose {21 based on our
prior knowledge about the physical-world dynamics.

It is also important to ensure that the distribution over
the state space in simulation is similar to the distribution of
over state-space in the physical world. We address this as
follows: Sensors on the robot are used to scan the real-world
environment and develop a simplified representation of the
real house that is consistent with the training environment.
At each timestep, we copy the position of walls and objects
from the physical world, over to our simulator. We then
generate observations directly from the simulator, and pass
those to the trained DNRC agent. The resulting physical-
world policy is near-optimal, so long as we correctly map
the physical world to our simulator. The DNRC agent trans-
fers well to the physical environment achieving an average
reward of 0.58.

6. Discussion

A number of challenges and interesting observations
were encountered in this work, that would go unpublished
if not mentioned here:

e Orthogonalizing the action space (into linear and
angular velocity) greatly improved training stability

« Convergence was very poor if the environment was
not reset after the target was reached. It is thought
that resetting the environment frequently helps to re-
duce variance in the (s, a), making learning more
stable.

e The Proximal Policy (PPO) algorithm was tested
extensively, but the minimum batch size seemingly
scales with task difficulty. Hence, applying this al-
gorithm to complex tasks seems problematic.

e Network bandwidth was the limiting factor in our
distributed training setup, with each node producing
25 GB/s of observation data.

7. Conclusion

We proposed a new method, Deep Neural Robot Control
(DNRC), to solve long navigation problems with reinforce-
ment learning. This approach, performs exceptionally well
on several robot navigation tasks, learning a human-like pol-
icy for navigation and collision avoidance. We demonstrated
that the DNRC policy can be transferred to a physical robot,
using a simulated environment model as an abstraction layer
over the physical world.
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