Please do not post this paper publicly online, as this is ongoing research. Thank you!

Task Discovery

CS230 Final Project: Milestone

Topic: Transfer Learning

Ajay Sohmshetty (collaboration with Amir Zamir)

Abstract

This project centers around the theme of task
discovery. Specifically, we execute a principled
study towards discovering members of the task
space. To accomplish this, we first define members
of the visual task space (i.e. different visual tasks,
or better termed visual abstractions). We then
explore a series of learnability experiments to better
understand what makes a task real versus random.
Finally, we investigate a series of reduction
mechanisms to distill this space and make this
problem more tractable, and execute a task
discovery search. We find encouraging results. This
research work is mentored by Amir Zamir.

Background and Related Work

Recently, transfer learning has garnered much
attention. Taskonomy [1] helped to establish the
inherent relationships between tasks, but these
tasks have been hand chosen by humans as
deemed to be relevant and important. What if there
are other tasks, that we simply do not have
datasets on, that could be useful to transfer learn
on? This project aims to generate these tasks by
defining a task and investigate a series of reduction
mechanisms. The ultimate goal would be to apply
these as well as other reduction mechanisms to
filter down to a set of generated tasks that can be
learned from other models, which can then be used
for transfer learning purposes. Related work
includes:

1. Taskonomy
http://taskonomy.stanford.edu/taskonomy_C
VPR2018.pdf [1]

2. Perceptual losses for real-time style transfer
and super-resolution
https://arxiv.org/abs/1603.08155 [5]

3. Random Features for Large-Scale Kernel
Machines

https://people.eecs.berkeley.edu/~brecht/pa
pers/07.rah.rec.nips.pdf [6]

4. Projection Pursuit
https://www.jstor.org/stable/22411757seq=1
#page_scan_tab_contents [7]

5. Multi-loss Regularized Deep Neural
Network
https://ieeexplore.ieee.org/document/72583
43/ [8]

6. Differentiable parameterizations:
https://distill.pub/2018/differentiable-parame
terizations/ [9]

Task Formulation

For these experiments, we use CIFAR10 and
CIFAR100 datasets. Instead of the model
attempting to predict the class of the image, we
formulate the task into a binary classification
problem. We pick a class A and generate n-1 other
random classes. For each class chosen, we pick m
randomly chosen CIFAR100 images. The label will
be a 1 if the image is of class A, and 0 otherwise.
The dataset size is N=n*m. Note: this simplification
is intentional, as it drastically simplifies the space of
tasks. To further simplify the space of tasks,
throughout this project we predominantly work with
relatively small datasets, typically ranging from
about 100-200 datapoints. We employ the standard
80-20 train-dev split.

Architecture Used

Layer Details

input 32x32x3 (cifar100 images)
conv1 5x5 filters, 6 of them

pool 2x2 filter, stride 2

conv2 5x5 filters, 16 of them

fc1 120 hidden units

fc2 84 hidden units

fc3 2 output units




The above table shows the architecture we used.
We intentionally chose to use very shallow network.
Our dataset size is quite small, so using a more
sophisticated architecture (as in the architecture
presented in the ResNet [10] paper) would overfit
immediately. The goal here is to identify learnable
tasks - not to solve them.

We pick a 200 image task (for classes “ship”,
“horse”, “deer”, and “frog”) and run our baseline
architecture. The figure below shows the results.
Note how almost all tasks generalize, though the

frog task seems to be a particularly difficult one.

Original Pixel Features - 200 images

Train - frog
— = Val - ship
= = Val - horse
= = Val -'deer
— = Val - frog

Baseline Classifiers

For our baselines, we use a statistically informed as
well as a blind classifier.

Random Features Exploration

CIFAR100 images are already quite small at
32x32x3 dimensionality. Here, we investigated
whether there a potentially more concise
representation of these images. Can we use a
feature extractor and train on derived features to
identify learnability instead? The immediate thought
was to simply use a pretrained ResNet (or similar
arch) to generate these embeddings. However,
these pretrained models are biased: they extract
features relevant to the task that they were
pretrained for. This is ultimately problematic
because our end goal would be to generate “tasks”
in large scale. What follows has been inspired by
recent work has showcased the power of random
features generated from large randomly initialized
ResNets. | used the CIFAR100 ResNet architecture
proposed in the original Deep Residual Networks
paper as inspiration for the model to use to extract
features, and randomly initialized 6 networks. |
adjusted the final few layers to make the output

Train - ship
Train - horse
Train - deer

size 3x8x8. The graph below shows the results of
this experiment.

Random Features on Ship Task - 3x8x8 shape, 200 images, 1 resnet(s)

rain - random init #0
rain - random init #1
0.8 in - random init #2
- random init #3
rain - random init #4
0.6| rain - random init #5

- random init #0

- random init #1
0.4 - random init #2
- random init #3
- random init #4

0.2 - random init #5

Note that this on the “ship task” which has clear
signs of generalization as in the above baseline.
We can see that there are random initializations
that generalize. However, many of the initializations
do not seem to generalize. These random
initializations, while sometimes useful, are clearly
volatile and require aggregation / ensembling in
order to be useful. Furthermore, the original pixel
task seems to performing better than all
initializations. So there is no clear input
dimensionality reduction benefit, but an additional
computational cost (with generating these random
features) and a loss in generalization. Here’s
another set of experiments | ran, this time for 3x4x4
random features. | overlaid the original pixel task
curves. Clearly, anything below 3x8x8 doesn’t
work; none of the tasks’ random features show
signs of generalization.

200 image dataset. Random features (RFs) of shape 3x4x4.

Train - deer task (3x4x4 RFs)

—— Train - frog task (3x4x4 RFs)

Train - ship task (original pixels)

Train - horse task (original pixels)

Train - deer task (original pixels)

Train - frog task (original pixels)

— — Val - ship task (3x4x4 RFs)

= = Val - horse task (3x4x4 RFs)

— — Val - deer task (3x4x4 RFs)

~ = Val - frog task (3x4x4 RFs)

~ = Val - ship task (original pixels)
Val - horse task (original pixels)

— = Val - deer task (original pixels)

Val - frog task (original pixels)

I/I‘/

loss

epoch

Learnability Studies

In order to better understand the concept of task
learnability, we performed a series of additional
studies.

Ablation study. This tests the degree to which we
can ablate labels of a particular task and still be
able to discover it. By identifying this tolerance
threshold, we can use it to cluster similar tasks, and
thus leverage this mechanism to reduce the full
space of tasks to try. From the below graph, we




pick a 20% ablation tolerance, since we still safely
see generalization in this regime.

400 image dataset, frog task. Negative labels: ['ship’, 'horse', 'deer']

1

K ,/“r/’ —— Train - 0% labels ablated
4 —— Train - 1% labels ablated
rain - 5% labels ablated
rain - 10% labels ablated
rain - 20% labels ablated
rain - 30% labels ablated
rain - 50% labels ablated
- 0% labels ablated

- 1% labels ablated

al - 5% labels ablated

‘al - 10% labels ablated

loss

‘al - 20% labels ablated
al - 30% labels ablated
- 50% labels ablated

epoch

Dataset size and class distribution study. We define
class distribution as the ratio between the positive

and negative classes. In our experiments, found
that the dataset size is highly dependant on the
class distribution and the classes chosen. Given a
400 size dataset, as in the graph below,
generalization is lost beyond the 1:19 class ratio
data regime. Hence, we will stick with at most a
1:19 ratio moving forward.

sz -

Fixed number of positive datapoints study. This
investigates whether it is indeed the class ratio, or

rather the number of positive datapoints that the
model is exposed that is in fact salient. We
conclude here that number of positive datapoints is
the more important factor, but too high of a class
ratio results in the model overfitting too quickly.

g "\, ! c,»/\\"‘ A
W
Wy

Real vs. Random Task Evaluation

Given these learnability experiments, we are now
armed with a way to distinguish between a real and
a random task. In order to calibrate losses, we first
run our baseline models (see Baseline section),
then take the average validation loss; let this be b.
Given the validation loss per learning step for a
given training run, we smooth the validation losses
using a rolling window of size 5, taking the median
for each window. The minimum value of this list
gives us the generalization level of the run, let this
be g. Therefore, we define the task-ness score to
be (b-g)/b. Furthermore, a particular dataset is a
task if (b-g)/b > T, where T, is the task
threshold. A task discovery system attempts to find
a label set (i.e. an assignment of labels to a given
set of images), such that it maximizes the task-ness
score.

Clustering As A Reduction Mechanism

The task space is combinatorially massive.
Consider a dataset of size 200. The number of
label assignments for a binary classification is 22!
To evaluate every single label set would be simply
intractable. Therefore, we use the ablation
tolerance found (20%) from previous experiment to
cluster label sets. Upon initial inspection, the
meanshift clustering seemed like an attractive
clustering algorithm to use, since the bandwidth
parameter has a direct geometric interpretation
(can tie back to the ablation tolerance of 20%), and
also does not require a cluster k parameter as in
k-means. However, due to the symmetry and
uniformly distributed nature of the label set space,



this approach did not work; the algorithm either
found 1 single cluster, or N number of clusters
(where N is the size of the dataset). Hence, we
moved onto k-means, and attempted to empirically
determine the k value required to achieve a 20%
average ablation for each cluster. Unfortunately, we
did not see any significant reduction in this space;
likely because asymptotically this is a linear
reduction, whereas the label space grows
exponentially. We are still investigating this and
evaluating the mathematics behind this
phenomenon. The below table shows our results on

this.

N, ratio K Label set | Avg
size Cluster
Ablation
400, 1:9 6000 20000 50%
400, 1:9 6000 30000 57%
400, 1:9 7000 30000 54%
400, 1:9 9000 30000 50%
400, 1:9 10000 40000 47%
400, 1:9 9000 40000 55%
400, 1:9 10000 40000 53%
400, 1:9 12000 40000 50%
100, 1:9 1000 20000 51%
100, 1:9 1000 30000 54%
100, 1:9 1000 40000 57%
100, 1:9 1000 50000 58.5%
100, 1:9 1000 60000 60%
100, 1:9 1000 80000 62.6%
100, 1:9 1000 100000 63.9%
100, 1:9 1000 150000 65.4%
20, 1:4 150 1000 20.1%
20,1:4 150 2000 22.5%

20,1:4 150 3000 23.3%
20,1:4 150 5000 24.0%
20,1:4 150 6000 24.3%
20,1:4 150 7000 24.7%
20,1:4 150 8000 25.0%
20,1:4 150 9000 24.9%
20,1:4 150 10000 25.1%
20,1:4 150 13000 25.4%
20,1:4 150 15000 25.2%
20,1:4 150 18000 25.4%
20,1:4 150 25000 25.8%
20,1:4 150 30000 25.3%
20,1:4 150 40000 25.4%
20,1:4 150 50000 25.3%
20,1:4 150 100000 25.7%

Note that we simply do not see average cluster
ablation percentage stabilize under any regime for
dataset size of 100 and 400 (ie increasing label set
size also increases average cluster ablation). It only
stabilizes under the 20 dataset size regime, where
the total number of label sets possible is exactly
4845. As such it becomes invariant to label set size
only after it passes that mark. Meanwhile, in the
non-20 dataset size regime, the relationship starts
off as roughly linear, then seems to decay
sublinearly. We defer further analysis to a later
exploration, and instead move on without
performing clustering as a reduction mechanism.

Task Discovery

As an initial experiment, we first generated 100
random tasks (500 dataset size, 1:9 ratio), and then
examined the random task with the highest
taskness score. The result was noise, and the
labels were not anything intelligible. So, we
employed gradient free optimization techniques to
better search this space, using the NeverGrad



package by Facebook [3]. This experiment proved
to be more fruitful, and showed encouraging
results. We formulated the problem as follows. We
select a set of N images (we use 50), of class ratio
1:R (we use 4). Hence there are N/(R+1) total true
positive CIFAR classes in the image set.
NeverGrad optimizes over a hyperparameter vector
of size N, where each dimension takes a value
between 0 and 1. During evaluation, we take the
highest N/(R+1) values in the hyperparameter
vector, and set the corresponding labels in our label
set to 1. We then split our dataset and train the
model, defining the evaluation loss of this run as
1-mean taskness score. We set a budget of 4000
and use the TwoPointsDE optimization strategy, an
evolution strategy black-box optimization algorithm
[2]. Here are some sample results from repeated
runs of this setup:

Run 1: Taskness score 1-0.21/0.45 = 0.53

T &=

Run 3: Taskness score 1-0.33/0.45 = 0.26:

Here, these tasks are clearly related! For example
in run 1, we see clear common patterns in the
images (ex. triangles present, blue colors). Similar
types of patterns exist in the other 4 runs as well.
Compared with the purely random search, this
seems to be performing much better, and we are
discovering what seem like real tasks!

Conclusion

We define a visual perception task, and using
CIFAR100 images, perform a series of learnability
experiments. From these explorations, we find an
automated method of computing taskness score,
and run gradient-free blackbox optimization on this
space to discover tasks. We see encouraging
results, as discovered task look meaningful and

return real task-like taskness scores. The next
logical step would be to perform a large scale task
discovery search. This involves enforcing
orthogonality among found tasks. I.e. we want to
find sufficiently different tasks in each subsequent
search. We hope to discover the original CIFAR100
tasks in this dataset, alongside other real,
interesting tasks. If successful, we can leverage
these tasks for transfer learning purposes. We've
seen from Taskonomy [1] that establishing and
leveraging relationships between tasks can build
better, more generalizable models. An automated
method of discovering tasks such as the method
presented in this paper may unlock the true
potential of transfer learning. We hope to submit to
NeurlPS this upcoming May.

Contributions
| would like to thank Amir Zamir for his insight and
direction, as well as Shervine Amidi for his

mentorship and availability.

Github Link
https://qithub.com/ajay1495/task_discovery

References

1. http://taskonomy.stanford.edu/taskonomy C

VPR2018.pdf
http://www.cs.cmu.edu/~aarti/SMLRG/migqu

el_slides.pdf

https://code.fb.com/ai-research/nevergrad/

https://arxiv.org/pdf/1703.03864.pdf

https://arxiv.org/abs/1603.08155

https://people.eecs.berkeley.edu/~brecht/pa

pers/07.rah.rec.nips.pdf

https://www.jstor.org/stable/2241175%?seq=1

#page_scan_tab_contents

8. https://ieeexplore.ieee.org/document/72583
43/

9. https://distill.pub/2018/differentiable-parame
terizations/

10. https://arxiv.org/abs/1512.03385

N

ook

o




